The Maxwell equation in a periodic medium : homogenization of the energy density
In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time...
The electromagnetic initial-boundary value problem for a cavity enclosed by perfectly conducting walls is considered. The cavity medium is defined by its permittivity and permeability which vary continuously in space. The electromagnetic field comes from a source in the cavity. The field is described by a magnetic vector potential satisfying a wave equation with initial-boundary conditions. This description through is rigorously shown to give a unique solution of the problem and is the starting...
Caustics of geometrical optics are understood as special types of Lagrangian singularities. In the compact case, they have remarkable topological properties, expressed in particular by the Chekanov relation. We show how this relation may be experimentally checked on an example of biperiodic caustics produced by the deflection of the light by a nematic liquid crystal layer. Moreover the physical laws may impose a geometrical constraint, when the system is invariant by some group of symmetries. We...
We define and characterize weak and strong two-scale convergence in Lp, C0 and other spaces via a transformation of variable, extending Nguetseng's definition. We derive several properties, including weak and strong two-scale compactness; in particular we prove two-scale versions of theorems of Ascoli-Arzelà, Chacon, Riesz, and Vitali. We then approximate two-scale derivatives, and define two-scale convergence in spaces of either weakly or strongly differentiable functions. We also derive...