An analysis of the Darwin model of approximation to Maxwell's equations.
Isogeometric analysis has been developed recently to use basis functions resulting from the CAO description of the computational domain for the finite element spaces. The goal of this study is to develop an axisymmetric Finite Element PIC code in which specific spline Finite Elements are used to solve the Maxwell equations and the same spline functions serve as shape function for the particles. The computational domain itself is defined using splines...
The aim of this paper is to analyze a formulation of the eddy current problem in terms of a time-primitive of the electric field in a bounded domain with input current intensities or voltage drops as source data. To this end, we introduce a Lagrange multiplier to impose the divergence-free condition in the dielectric domain. Thus, we obtain a time-dependent weak mixed formulation leading to a degenerate parabolic problem which we prove is well-posed. We propose a finite element method for space...
In questo lavoro viene considerato il modello bidimensionale completo di sistema elettromagnetico in movimento: le equazioni dei campi elettromagnetici sono accoppiate con quelle della meccanica e il sistema così ottenuto risulta essere non lineare nell'accoppiamento. Vengono analizzate la buona posizione del problema e la regolarità della soluzione continua; si propone inoltre uno schema di discretizzazione di tipo esplicito. Si dimostra la buona posizione e la convergenza della formulazione discreta...
This paper is concerned with the nonlinear theory of equilibrium for materials which do not conduct electricity. An existence and uniqueness result is established.
The paper deals with a boundary control problem for the Maxwell dynamical system in a bounbed domain Ω ⊂ R3. Let ΩT ⊂ Ω be the subdomain filled by waves at the moment T, T* the moment at which the waves fill the whole of Ω. The following effect occurs: for small enough T the system is approximately controllable in ΩT whereas for larger T < T* a lack of controllability is possible. The subspace of unreachable states is of finite dimension determined by topological characteristics of ΩT.
The bioelectric current dipole model is important both theoretically and computationally in the study of electrical activity in the brain and stomach due to the resemblance of the shape of these two organs to an ellipsoid. To calculate the magnetic field due to a dipole in an ellipsoid, one must evaluate truncated series expansions involving ellipsoidal harmonics , which are products of Lamé functions. In this article, we extend a strictly analytic model (G. Dassios and F. Kariotou, J. Math....
This paper is devoted to the study of cloaking via anomalous localized resonance (CALR) in the two- and three-dimensional quasistatic regimes. CALR associated with negative index materials was discovered by Milton and Nicorovici [21] for constant plasmonic structures in the two-dimensional quasistatic regime. Two key features of this phenomenon are the localized resonance, i.e., the fields blow up in some regions and remain bounded in some others, and the connection between the localized resonance...
A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form , one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.