Page 1 Next

Displaying 1 – 20 of 35

Showing per page

Tangential fields in mathematical model of optical diffraction

Krček, Jiří, Vlček, Jaroslav (2015)

Programs and Algorithms of Numerical Mathematics

We present the formulation of optical diffraction problem on periodic interface based on vector tangential fields, for which the system of boundary integral equations is established. Obtained mathematical model is numerically solved using boundary element method and applied to sine interface profile.

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

T-coercivity for scalar interface problems between dielectrics and metamaterials

Anne-Sophie Bonnet-Ben Dhia, Lucas Chesnel, Patrick Ciarlet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Some electromagnetic materials have, in a given frequency range, an effective dielectric permittivity and/or a magnetic permeability which are real-valued negative coefficients when dissipation is neglected. They are usually called metamaterials. We study a scalar transmission problem between a classical dielectric material and a metamaterial, set in an open, bounded subset of Rd, with d = 2,3. Our aim is to characterize occurences where the problem is well-posed within the Fredholm (or coercive...

The dynamics of a levitated cylindrical permanent magnet above a superconductor.

Michael Schreiner (2003)

Revista Matemática Complutense

When a permanent magnet is released above a superconductor, it is levitated. This is due to the Meissner-effect, i.e. the repulsion of external magnetic fields within the superconductor. In experiments, an interesting behavior of the levitated magnet can be observed: it might start to oscillate with increasing amplitude and some magnets even reach a continuous rotation. In this paper we develop a mathematical model for this effect and identify by analytical methods as well with finite element simulations...

The polarization in a ferroelectric thin film: local and nonlocal limit problems

Antonio Gaudiello, Kamel Hamdache (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.

Currently displaying 1 – 20 of 35

Page 1 Next