Page 1

Displaying 1 – 19 of 19

Showing per page

Il criterio dell'energia e Vequazione di Maxwell-Cattaneo nella termodinamica dei sistemi elettromagnetici non lineari

Ettore Laserra, Giovanni Matarazzo (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study the evolution law of the canonical energy of an electromagnetic material, immersed in an environment that is thermally and electromagnetically passive, at constant temperature. We use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem

Yanlai Chen, Jan S. Hesthaven, Yvon Maday, Jerónimo Rodríguez (2009)

ESAIM: Mathematical Modelling and Numerical Analysis


In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints...

Integral Equations VIA Saddle Point Problem for 2D Electromagnetic Problems

Nathalie Bartoli, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new system of integral equations for the exterior 2D time harmonic scattering problem is investigated. This system was first proposed by B. Després in [11]. Two new derivations of this system are given: one from elementary manipulations of classical equations, the other based on a minimization of a quadratic functional. Numerical issues are addressed to investigate the potential of the method.

Introduction to magnetic resonance imaging for mathematicians

Charles L. Epstein (2004)

Annales de l’institut Fourier

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Inverse scattering via nonlinear integral equations method for a sound-soft crack with phaseless data

Peng Gao, Heping Dong, Fuming Ma (2018)

Applications of Mathematics

We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...

Currently displaying 1 – 19 of 19

Page 1