Partial Bell-state analysis with parametric down conversion in the Wigner function formalism.
A characterization of the structure of positive maps is presented. This sheds some more light on the old open problem studied both in Quantum Information and Operator Algebras. Our arguments are based on the concept of exposed points, links between tensor products and mapping spaces and convex analysis.
We establish circumstances under which the dispersion of passive contaminants in a forced flow can be consistently interpreted as a Markovian diffusion process.
We prove that a pure state on a -algebras or a JB algebra is a unique extension of some pure state on a singly generated subalgebra if and only if its left kernel has a countable approximative unit. In particular, any pure state on a separable JB algebra is uniquely determined by some singly generated subalgebra. By contrast, only normal pure states on JBW algebras are determined by singly generated subalgebras, which provides a new characterization of normal pure states. As an application we contribute...