Page 1 Next

Displaying 1 – 20 of 26

Showing per page

The existence of states on every Archimedean atomic lattice effect algebra with at most five blocks

Zdena Riečanová (2008)

Kybernetika

Effect algebras are very natural logical structures as carriers of probabilities and states. They were introduced for modeling of sets of propositions, properties, questions, or events with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without any state, and questions about the existence (for non-modular) are still unanswered. We show that every Archimedean atomic lattice effect algebra with at most five blocks (maximal MV-subalgebras) has at least one state, which...

The exocenter and type decomposition of a generalized pseudoeffect algebra

David J. Foulis, Silvia Pulmannová, Elena Vinceková (2013)

Discussiones Mathematicae - General Algebra and Applications

We extend the notion of the exocenter of a generalized effect algebra (GEA) to a generalized pseudoeffect algebra (GPEA) and show that elements of the exocenter are in one-to-one correspondence with direct decompositions of the GPEA; thus the exocenter is a generalization of the center of a pseudoeffect algebra (PEA). The exocenter forms a boolean algebra and the central elements of the GPEA correspond to elements of a sublattice of the exocenter which forms a generalized boolean algebra. We extend...

The theory and applications of complex matrix scalings

Rajesh Pereira, Joanna Boneng (2014)

Special Matrices

We generalize the theory of positive diagonal scalings of real positive definite matrices to complex diagonal scalings of complex positive definite matrices. A matrix A is a diagonal scaling of a positive definite matrix M if there exists an invertible complex diagonal matrix D such that A = D*MD and where every row and every column of A sums to one. We look at some of the key properties of complex diagonal scalings and we conjecture that every n by n positive definite matrix has at most 2n−1 scalings...

Time and space complexity of reversible pebbling

Richard Královič (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

This paper investigates one possible model of reversible computations, an important paradigm in the context of quantum computing. Introduced by Bennett, a reversible pebble game is an abstraction of reversible computation that allows to examine the space and time complexity of various classes of problems. We present a technique for proving lower and upper bounds on time and space complexity for several types of graphs. Using this technique we show that the time needed to achieve optimal space for...

Time and space complexity of reversible pebbling

Richard Královič (2010)

RAIRO - Theoretical Informatics and Applications

This paper investigates one possible model of reversible computations, an important paradigm in the context of quantum computing. Introduced by Bennett, a reversible pebble game is an abstraction of reversible computation that allows to examine the space and time complexity of various classes of problems. We present a technique for proving lower and upper bounds on time and space complexity for several types of graphs. Using this technique we show that the time needed to achieve optimal space for...

Currently displaying 1 – 20 of 26

Page 1 Next