Page 1 Next

Displaying 1 – 20 of 48

Showing per page

Observables on σ -MV algebras and σ -lattice effect algebras

Anna Jenčová, Sylvia Pulmannová, Elena Vinceková (2011)

Kybernetika

Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered σ -effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a σ -MV algebra, and every observable is defined by a smearing of a sharp...

On complete-cocomplete subspaces of an inner product space

David Buhagiar, Emmanuel Chetcuti (2005)

Applications of Mathematics

In this note we give a measure-theoretic criterion for the completeness of an inner product space. We show that an inner product space S is complete if and only if there exists a σ -additive state on C ( S ) , the orthomodular poset of complete-cocomplete subspaces of S . We then consider the problem of whether every state on E ( S ) , the class of splitting subspaces of S , can be extended to a Hilbertian state on E ( S ¯ ) ; we show that for the dense hyperplane S (of a separable Hilbert space) constructed by P. Pták and...

On interval homogeneous orthomodular lattices

Anna de Simone, Mirko Navara, Pavel Pták (2001)

Commentationes Mathematicae Universitatis Carolinae

An orthomodular lattice L is said to be interval homogeneous (resp. centrally interval homogeneous) if it is σ -complete and satisfies the following property: Whenever L is isomorphic to an interval, [ a , b ] , in L then L is isomorphic to each interval [ c , d ] with c a and d b (resp. the same condition as above only under the assumption that all elements a , b , c , d are central in L ). Let us denote by Inthom (resp. Inthom c ) the class of all interval homogeneous orthomodular lattices (resp. centrally interval homogeneous...

On joint distribution in quantum logics. I. Compatible observables

Anatolij Dvurečenskij (1987)

Aplikace matematiky

The notion of a joint distribution in σ -finite measures of observables of a quantum logic defined on some system of σ -independent Boolean sub- σ -algebras of a Boolean σ -algebra is studied. In the present first part of the paper the author studies a joint distribution of compatible observables. It is shown that it may exists, although a joint obsevable of compatible observables need not exist.

On joint distribution in quantum logics. II. Noncompatible observables

Anatolij Dvurečenskij (1987)

Aplikace matematiky

This paper i a continuation of the first part under the same title. The author studies a joint distribution in σ -finite measures for noncompatible observables of a quantum logic defined on some system of σ -independent Boolean sub- σ -algebras of a Boolean σ -algebra. We present some necessary and sufficient conditions fot the existence of a joint distribution. In particular, it is shown that an arbitrary system of obsevables has a joint distribution in a measure iff it may be embedded into a system...

On mean value in F -quantum spaces

Beloslav Riečan (1990)

Aplikace matematiky

The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.

Currently displaying 1 – 20 of 48

Page 1 Next