Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1
We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.
This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.
We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an -body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as tends to infinity.