Displaying 181 – 200 of 206

Showing per page

Two Hartree-Fock models for the vacuum polarization

Philippe Gravejat, Christian Hainzl, Mathieu Lewin, Éric Séré (2012)

Journées Équations aux dérivées partielles

We review recent results about the derivation and the analysis of two Hartree-Fock-type models for the polarization of vacuum. We pay particular attention to the variational construction of a self-consistent polarized vacuum, and to the physical agreement between our non-perturbative construction and the perturbative description provided by Quantum Electrodynamics.

Velocity and Entropy of Motion in Periodic Potentials

Andreas Knauf (1996/1997)

Séminaire Équations aux dérivées partielles

This is a report on recent joint work with J. Asch, and with T. Hudetz and F. Benatti.We consider classical, quantum and semiclassical motion in periodic potentials and prove various results on the distribution of asymptotic velocities.The Kolmogorov-Sinai entropy and its quantum generalization, the Connes-Narnhofer-Thirring entropy, of the single particle and of a gas of noninteracting particles are related.

Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation

Bernard Ducomet (2010)

Applications of Mathematics

We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an N -body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as N tends to infinity.

Currently displaying 181 – 200 of 206