Displaying 261 – 280 of 413

Showing per page

Quantum homogeneous superspaces and quantum duality principle

Rita Fioresi (2015)

Banach Center Publications

We define the concept of quantum section of a line bundle of a homogeneous superspace and we employ it to define the concept of quantum homogeneous projective superspace. We also suggest a generalization of the QDP to the quantum supersetting.

Quantum isometries and group dual subgroups

Teodor Banica, Jyotishman Bhowmick, Kenny De Commer (2012)

Annales mathématiques Blaise Pascal

We study the discrete groups Λ whose duals embed into a given compact quantum group, Λ ^ G . In the matrix case G U n + the embedding condition is equivalent to having a quotient map Γ U Λ , where F = { Γ U U U n } is a certain family of groups associated to G . We develop here a number of techniques for computing F , partly inspired from Bichon’s classification of group dual subgroups Λ ^ S n + . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian...

Quantum mechanics and nonabelian theta functions for the gauge group SU(2)

Răzvan Gelca, Alejandro Uribe (2015)

Fundamenta Mathematicae

We propose a direction of study of nonabelian theta functions by establishing an analogy between the Weyl quantization of a one-dimensional particle and the metaplectic representation on the one hand, and the quantization of the moduli space of flat connections on a surface and the representation of the mapping class group on the space of nonabelian theta functions on the other. We exemplify this with the cases of classical theta functions and of the nonabelian theta functions for the gauge group...

Quantum stochastic convolution cocycles -algebraic and C*-algebraic

J. Martin Lindsay, Adam G. Skalski (2006)

Banach Center Publications

We summarise recent results concerning quantum stochastic convolution cocycles in two contexts-purely algebraic and C*-algebraic. In each case the class of cocycles arising as the solution of a quantum stochastic differential equation is characterised and the form taken by the stochastic generator of a *-homomorphic cocycle is described. Throughout the paper a common viewpoint on the algebraic and C*-algebraic situations is emphasised; the final section treats the unifying example of convolution...

Quantum symmetries in noncommutative C*-systems

Marcin Marciniak (1998)

Banach Center Publications

We introduce the notion of a completely quantum C*-system (A,G,α), i.e. a C*-algebra A with an action α of a compact quantum group G. Spectral properties of completely quantum systems are investigated. In particular, it is shown that G-finite elements form the dense *-subalgebra of A. Furthermore, properties of ergodic systems are studied. We prove that there exists a unique α-invariant state ω on A. Its properties are described by a family of modular operators σ z z acting on . It turns out that ω...

Quantum-classical interactions and galois type extensions

Władysław Marcinek (2003)

Banach Center Publications

An algebraic model for the relation between a certain classical particle system and the quantum environment is proposed. The quantum environment is described by the category of possible quantum states. The initial particle system is represented by an associative algebra in the category of states. The key new observation is that particle interactions with the quantum environment can be described in terms of Hopf-Galois theory. This opens up a possibility to use quantum groups in our model of particle...

Currently displaying 261 – 280 of 413