The Painlevé III equation and the Iwasawa decomposition.
The “quantum duality principle” states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors and , inverse to...
Characteristic properties of corings with a grouplike element are analysed. Associated differential graded rings are studied. A correspondence between categories of comodules and flat connections is established. A generalisation of the Cuntz-Quillen theorem relating existence of connections in a module to projectivity of this module is proven.
We give here a survey of some recent results on applications of topological quasi *-algebras to the analysis of the time evolution of quantum systems with infinitely many degrees of freedom.
Connes and Moscovici recently studied "twisted" spectral triples (A,H,D) in which the commutators [D,a] are replaced by D∘a - σ(a)∘D, where σ is a second representation of A on H. The aim of this note is to point out that this yields representations of arbitrary covariant differential calculi over Hopf algebras in the sense of Woronowicz. For compact quantum groups, H can be completed to a Hilbert space and the calculus is given by bounded operators. At the end, we discuss an explicit example of...