Page 1

Displaying 1 – 6 of 6

Showing per page

Vacuum Structure of 2+1-Dimensional Gauge Theories

Manuel Asorey, Fernando Falceto, Jose Lopez, Gloria Luzon (1997)

Banach Center Publications

We analyse some non-perturbative properties of the Yang-Mills vacuum in two-dimensional spaces in the presence of Chern-Simons interactions. We show that the vacuum functional vanishes for some gauge field configurations. We have identified some of those nodal configurations which are characterized by the property of carrying a non-trivial magnetic charge. In abelian gauge theories this fact explains why magnetic monopoles are suppressed by Chern-Simons interactions. In non-abelian theories it suggests...

Vortex rings for the Gross-Pitaevskii equation

Fabrice Bethuel, G. Orlandi, Didier Smets (2004)

Journal of the European Mathematical Society

We provide a mathematical proof of the existence of traveling vortex rings solutions to the Gross–Pitaevskii (GP) equation in dimension N 3 . We also extend the asymptotic analysis of the free field Ginzburg–Landau equation to a larger class of equations, including the Ginzburg–Landau equation for superconductivity as well as the traveling wave equation for GP. In particular we rigorously derive a curvature equation for the concentration set (i.e. line vortices if N = 3 ).

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and a selective...

Vorticity dynamics and turbulence models for Large-Eddy Simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

Currently displaying 1 – 6 of 6

Page 1