O(2) action on the 5-sphere.
We describe alternate methods of solution for a model arising in the work of Seiberg and Witten on N = 2 supersymmetric Yang-Mills theory and provide a complete argument for the characterization put forth by Argyres, Faraggi, and Shapere of the curve .
Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione dove é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di , l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).
We discuss a recent approach to quantum field theoretical path integration on noncommutative geometries which imply UV/IR regularising finite minimal uncertainties in positions and/or momenta. One class of such noncommutative geometries arise as `momentum spaces' over curved spaces, for which we can now give the full set of commutation relations in coordinate free form, based on the Synge world function.
We prove the existence of the path-integral measure of two-dimensional Yang-Mills theory, as a probabilistic Radon measure on the "generalized orbit space" of gauge connections modulo gauge transformations, suitably completed following the approach of Ashtekar and Lewandowski.
We consider a hamiltonian system which, in a special case and under the gauge group SU(2), can be considered as a reduction of the Yang-Mills field equations. We prove explicitly, using the Lax spectral curve technique and the van Moerbeke-Mumford method, that the flows generated by the constants of motion are straight lines on the Jacobi variety of a genus two Riemann surface.