Displaying 261 – 280 of 1377

Showing per page

Computer simulation of the atomic behaviour in condensed phases.

Antoni Giró Roca, Joan Angel Padró (1987)

Qüestiió

Molecular dynamics simulation method for the study of condensed phases of matter is described in this paper. Computer programs for the simulation of atomic motion have been developed. Time-saving techniques, like the cellular method have been incorporated in order to optimize the available computer resources. We have applied this method to the simulation of Argon near its melting point. Differences in the structure, thermodynamic properties and time correlation functions of solid and liquid phases...

Connectivity bounds for the vacant set of random interlacements

Vladas Sidoravicius, Alain-Sol Sznitman (2010)

Annales de l'I.H.P. Probabilités et statistiques

The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation...

Conservative forms of Boltzmann's collision operator: Landau revisited

Cédric Villani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that Boltzmann's collision operator can be written explicitly in divergence and double divergence forms. These conservative formulations may be of interest for both theoretical and numerical purposes. We give an application to the asymptotics of grazing collisions.

Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan (2005/2006)

Séminaire Équations aux dérivées partielles

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...

Convergence of gradient-based algorithms for the Hartree-Fock equations

Antoine Levitt (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...

Convergence of gradient-based algorithms for the Hartree-Fock equations

Antoine Levitt (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...

Currently displaying 261 – 280 of 1377