Displaying 61 – 80 of 1377

Showing per page

A new perspective on some approximations used in neutron transport modeling

Hanuš, Milan (2013)

Programs and Algorithms of Numerical Mathematics

In this contribution, we will use the Maxwell-Cartesian spherical harmonics (introduced in [1,2]) to derive a system of partial differential equations governing transport of neutrons within an interacting medium. This system forms an alternative to the well known P N approximation, which is based on the expansion of the directional dependence into tesseral spherical harmonics ([3,p.197]). In comparison with this latter set of equations, the Maxwell-Cartesian system posesses a much more regular structure,...

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines

Anne-Sophie Bonnet-Bendhia, Karim Ramdani (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to - . Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions...

A non elliptic spectral problem related to the analysis of superconducting micro-strip lines

Anne-Sophie Bonnet-Bendhia, Karim Ramdani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the spectral analysis of a non elliptic operator A , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator A has been derived, we determine its continuous spectrum. Then, we show that A is unbounded from below and that it has a sequence of negative eigenvalues tending to -∞. Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some...

A nonlocal singular perturbation problem with periodic well potential

Matthias Kurzke (2006)

ESAIM: Control, Optimisation and Calculus of Variations

For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a Γ -convergence theorem and show compactness up to translation in all L p and the optimal Orlicz space for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher (1994) for the coercive two-well case. The theorem has applications to a certain thin-film limit of the micromagnetic energy.

A nonlocal singular perturbation problem with periodic well potential

Matthias Kurzke (2005)

ESAIM: Control, Optimisation and Calculus of Variations

For a one-dimensional nonlocal nonconvex singular perturbation problem with a noncoercive periodic well potential, we prove a Γ-convergence theorem and show compactness up to translation in all Lp and the optimal Orlicz space for sequences of bounded energy. This generalizes work of Alberti, Bouchitté and Seppecher (1994) for the coercive two-well case. The theorem has applications to a certain thin-film limit of the micromagnetic energy.

A note on quenched moderate deviations for Sinai’s random walk in random environment

Francis Comets, Serguei Popov (2004)

ESAIM: Probability and Statistics

We consider the continuous time, one-dimensional random walk in random environment in Sinai’s regime. We show that the probability for the particle to be, at time t and in a typical environment, at a distance larger than t a ( 0 < a < 1 ) from its initial position, is exp { - Const · t a / [ ( 1 - a ) ln t ] ( 1 + o ( 1 ) ) } .

A note on quenched moderate deviations for Sinai's random walk in random environment

Francis Comets, Serguei Popov (2010)

ESAIM: Probability and Statistics

We consider the continuous time, one-dimensional random walk in random environment in Sinai's regime. We show that the probability for the particle to be, at time t and in a typical environment, at a distance larger than ta (0<a<1) from its initial position, is exp{-Const ⋅ ta/[(1 - a)lnt](1 + o(1))}.

A numerical perspective on Hartree−Fock−Bogoliubov theory

Mathieu Lewin, Séverine Paul (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan)...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms

Francis Filbet, Jingwei Hu, Shi Jin (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann equation. To define the quantum Maxwellian...

A numerical scheme for the quantum Boltzmann equation with stiff collision terms⋆

Francis Filbet, Jingwei Hu, Shi Jin (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerically solving the Boltzmann kinetic equations with the small Knudsen number is challenging due to the stiff nonlinear collision terms. A class of asymptotic-preserving schemes was introduced in [F. Filbet and S. Jin,J. Comput. Phys. 229 (2010) 7625–7648] to handle this kind of problems. The idea is to penalize the stiff collision term by a BGK type operator. This method, however, encounters its own difficulty when applied to the quantum Boltzmann...

A numerically efficient approach to the modelling of double-Qdot channels

A. Shamloo, A.P. Sowa (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation....

Currently displaying 61 – 80 of 1377