Displaying 41 – 60 of 1376

Showing per page

A lattice gas model for the incompressible Navier–Stokes equation

J. Beltrán, C. Landim (2008)

Annales de l'I.H.P. Probabilités et statistiques

We recover the Navier–Stokes equation as the incompressible limit of a stochastic lattice gas in which particles are allowed to jump over a mesoscopic scale. The result holds in any dimension assuming the existence of a smooth solution of the Navier–Stokes equation in a fixed time interval. The proof does not use nongradient methods or the multi-scale analysis due to the long range jumps.

A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model

F. M. Guillén-González, J. V. Gutiérrez-Santacreu (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we study a fully discrete mixed scheme, based on continuous finite elements in space and a linear semi-implicit first-order integration in time, approximating an Ericksen–Leslie nematic liquid crystal model by means of a Ginzburg–Landau penalized problem. Conditional stability of this scheme is proved via a discrete version of the energy law satisfied by the continuous problem, and conditional convergence towards generalized Young measure-valued solutions to the Ericksen–Leslie problem...

A lower bound for the principal eigenvalue of the Stokes operator in a random domain

V. V. Yurinsky (2008)

Annales de l'I.H.P. Probabilités et statistiques

This article is dedicated to localization of the principal eigenvalue (PE) of the Stokes operator acting on solenoidal vector fields that vanish outside a large random domain modeling the pore space in a cubic block of porous material with disordered micro-structure. Its main result is an asymptotically deterministic lower bound for the PE of the sum of a low compressibility approximation to the Stokes operator and a small scaled random potential term, which is applied to produce a similar bound...

A Metropolis adjusted Nosé-Hoover thermostat

Benedict Leimkuhler, Sebastian Reich (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a Monte Carlo technique for sampling from the canonical distribution in molecular dynamics. The method is built upon the Nosé-Hoover constant temperature formulation and the generalized hybrid Monte Carlo method. In contrast to standard hybrid Monte Carlo methods only the thermostat degree of freedom is stochastically resampled during a Monte Carlo step.

A Mixed Formulation of the Monge-Kantorovich Equations

John W. Barrett, Leonid Prigozhin (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and analyse a mixed formulation of the Monge-Kantorovich equations, which express optimality conditions for the mass transportation problem with cost proportional to distance. Furthermore, we introduce and analyse the finite element approximation of this formulation using the lowest order Raviart-Thomas element. Finally, we present some numerical experiments, where both the optimal transport density and the associated Kantorovich potential are computed for a coupling problem and problems...

A model of dense fluids

R. Streater (1998)

Banach Center Publications

We obtain coupled reaction-diffusion equations for the density and temperature of a dense fluid, starting from a discrete model in which at most one particle can be present at each site. The model is constructed by the methods of statistical dynamics. We verify that the theory obeys the first and second laws of thermodynamics. Some remarks on measurement theory for the position of a particle are offered.

A model of evolution of temperature and density of ions in an electrolyte

Andrzej Raczyński (2005)

Applicationes Mathematicae

We study existence and nonexistence of solutions (both stationary and evolution) for a parabolic-elliptic system describing the electrodiffusion of ions. In this model the evolution of temperature is also taken into account. For stationary states the existence of an external potential is also assumed.

A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices

Song Wang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a novel exponentially fitted finite element method with triangular elements for the decoupled continuity equations in the drift-diffusion model of semiconductor devices. The continuous problem is first formulated as a variational problem using a weighted inner product. A Bubnov-Galerkin finite element method with a set of piecewise exponential basis functions is then proposed. The method is shown to be stable and can be regarded as an extension to two dimensions of the...

Currently displaying 41 – 60 of 1376