Central limit theorems for the Potts model.
I consider p-Bernoulli bond percolation on transitive, nonamenable, planar graphs with one end and on their duals. It is known from [BS01] that in such a graph G we have three essential phases of percolation, i.e. , where is the critical probability and -the unification probability. I prove that in the middle phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ℍ². This result is similar to some results in [Lal].
A competition model on between three clusters and governed by directed last passage percolation is considered. We prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability . When this happens, we also prove that the central cluster almost surely has a positive density on . Our results rely on three couplings, allowing to link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and...
In the past years, many properties of the largest connected components of critical percolation on the high-dimensional torus, such as their sizes and diameter, have been established. The order of magnitude of these quantities equals the one for percolation on the complete graph or Erdős–Rényi random graph, raising the question whether the scaling limits of the largest connected components, as identified by Aldous (1997), are also equal. In this paper, we investigate the cycle structureof the largest...