Displaying 101 – 120 of 591

Showing per page

Clusters in middle-phase percolation on hyperbolic plane

Jan Czajkowski (2011)

Banach Center Publications

I consider p-Bernoulli bond percolation on transitive, nonamenable, planar graphs with one end and on their duals. It is known from [BS01] that in such a graph G we have three essential phases of percolation, i.e. 0 < p c ( G ) < p u ( G ) < 1 , where p c is the critical probability and p u -the unification probability. I prove that in the middle phase a.s. all the ends of all the infinite clusters have one-point boundaries in ∂ℍ². This result is similar to some results in [Lal].

Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems

Markos A. Katsoulakis, Petr Plecháč, Luc Rey-Bellet, Dimitrios K. Tsagkarogiannis (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

The primary objective of this work is to develop coarse-graining schemes for stochastic many-body microscopic models and quantify their effectiveness in terms of a priori and a posteriori error analysis. In this paper we focus on stochastic lattice systems of interacting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grained approximation that is directly computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the...

Coexistence probability in the last passage percolation model is 6 - 8 log 2

David Coupier, Philippe Heinrich (2012)

Annales de l'I.H.P. Probabilités et statistiques

A competition model on 2 between three clusters and governed by directed last passage percolation is considered. We prove that coexistence, i.e. the three clusters are simultaneously unbounded, occurs with probability 6 - 8 log 2 . When this happens, we also prove that the central cluster almost surely has a positive density on 2 . Our results rely on three couplings, allowing to link the competition interfaces (which represent the borderlines between the clusters) to some particles in the multi-TASEP, and...

Combining stochastic and deterministic approaches within high efficiency molecular simulations

Bruno Escribano, Elena Akhmatskaya, Jon Mujika (2013)

Open Mathematics

Generalized Shadow Hybrid Monte Carlo (GSHMC) is a method for molecular simulations that rigorously alternates Monte Carlo sampling from a canonical ensemble with integration of trajectories using Molecular Dynamics (MD). While conventional hybrid Monte Carlo methods completely re-sample particle’s velocities between MD trajectories, our method suggests a partial velocity update procedure which keeps a part of the dynamic information throughout the simulation. We use shadow (modified) Hamiltonians,...

Computer simulation of the atomic behaviour in condensed phases.

Antoni Giró Roca, Joan Angel Padró (1987)

Qüestiió

Molecular dynamics simulation method for the study of condensed phases of matter is described in this paper. Computer programs for the simulation of atomic motion have been developed. Time-saving techniques, like the cellular method have been incorporated in order to optimize the available computer resources. We have applied this method to the simulation of Argon near its melting point. Differences in the structure, thermodynamic properties and time correlation functions of solid and liquid phases...

Currently displaying 101 – 120 of 591