Radial symmetric solutions of the Cahn-Hilliard equation with degenerate mobility.
We consider the following problem: where Φ: Ω ⊂ → ℝ is an unknown function, Θ is an unknown constant and M, E are given parameters.
We study models of spatial growth processes where initially there are sources of growth (indicated by the colour green) and sources of a growth-stopping (paralyzing) substance (indicated by red). The green sources expand and may merge with others (there is no ‘inter-green’ competition). The red substance remains passive as long as it is isolated. However, when a green cluster comes in touch with the red substance, it is immediately invaded by the latter, stops growing and starts to act as a red...
We establish the lower bound , for the large times asymptotic behaviours of the probabilities of return to the origin at even times , for random walks associated with finite symmetric generating sets of solvable groups of finite Prüfer rank. (A group has finite Prüfer rank if there is an integer , such that any of its finitely generated subgroup admits a generating set of cardinality less or equal to .)
We analyse the spectral phase diagram of Schrödinger operators on regular tree graphs, with the graph adjacency operator and a random potential given by random variables. The main result is a criterion for the emergence of absolutely continuous spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials spectrum appears at arbitrarily weak disorder in an energy regime which extends beyond the spectrum of. Incorporating...