Mobility and Einstein relation for a tagged particle in asymmetric mean zero random walk with simple exclusion
Molecular motors are nano- or colloidal machines that keep the living cell in a highly ordered, stationary state far from equilibrium. This self-organized order is sustained by the energy transduction of the motors, which couple exergonic or 'downhill' processes to endergonic or 'uphill' processes. A particularly interesting case is provided by the chemomechanical coupling of cytoskeletal motors which use the chemical energy released during ATP hydrolysis in order to generate mechanical forces and...
In this paper, we discuss advanced thermostatting techniques for sampling molecular systems in the canonical ensemble. We first survey work on dynamical thermostatting methods, including the Nosé-Poincaré method, and generalized bath methods which introduce a more complicated extended model to obtain better ergodicity. We describe a general controlled temperature model, projective thermostatting molecular dynamics (PTMD) and demonstrate that it flexibly accommodates existing alternative thermostatting...
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability...