The Apollonian decay of beer foam bubble size distribution and the lattices of Young diagrams and their correlated mixing functions.
The existence of solutions to the Cauchy problem for a nonlinear parabolic equation describing the gravitational interaction of particles is studied under minimal regularity assumptions on the initial conditions. Self-similar solutions are constructed for some homogeneous initial data.
We discuss the different roles of the entropy principle in modern thermodynamics. We start with the approach of rational thermodynamics in which the entropy principle becomes a selection rule for physical constitutive equations. Then we discuss the entropy principle for selecting admissible discontinuous weak solutions and to symmetrize general systems of hyperbolic balance laws. A particular attention is given on the local and global well-posedness of the relative Cauchy problem for smooth solutions....
This short course explains how the usual mean-field evolution PDEs in Statistical Physics - such as the Vlasov-Poisson, Schrödinger-Poisson or time-dependent Hartree-Fock equations - are rigorously derived from first principles, i.e. from the fundamental microscopic models that govern the evolution of large, interacting particle systems.
In this paper we study the parabolic Anderson equation , , , where the -field and the -field are -valued, is the diffusion constant, and is the discrete Laplacian. The -field plays the role of adynamic random environmentthat drives the equation. The initial condition , , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump...
I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
The purpose of the present article is to compare different phase-space sampling methods, such as purely stochastic methods (Rejection method, Metropolized independence sampler, Importance Sampling), stochastically perturbed Molecular Dynamics methods (Hybrid Monte Carlo, Langevin Dynamics, Biased Random Walk), and purely deterministic methods (Nosé-Hoover chains, Nosé-Poincaré and Recursive Multiple Thermostats (RMT) methods). After recalling some theoretical convergence properties for the...