Page 1

Displaying 1 – 12 of 12

Showing per page

Gelation in coagulation and fragmentation models.

Miguel Escobedo (2002)

RACSAM

We first present very elementary relations between climate and aerosols. The we introduce the homogeneous coagulation equation as a simple model to describe systems of merging particles like polymers or aerosols. We next give a recent result about gelation of solutions. We end with some related open questions.

General approximation method for the distribution of Markov processes conditioned not to be killed

Denis Villemonais (2014)

ESAIM: Probability and Statistics

We consider a strong Markov process with killing and prove an approximation method for the distribution of the process conditioned not to be killed when it is observed. The method is based on a Fleming−Viot type particle system with rebirths, whose particles evolve as independent copies of the original strong Markov process and jump onto each others instead of being killed. Our only assumption is that the number of rebirths of the Fleming−Viot type system doesn’t explode in finite time almost surely...

Generalized kinetic equations and effective thermodynamics

Pierre-Henri Chavanis (2004)

Banach Center Publications

We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...

Generic principles of active transport

Mauro Mobilia, Tobias Reichenbach, Hauke Hinsch, Thomas Franosch, Erwin Frey (2008)

Banach Center Publications

Nonequilibrium collective motion is ubiquitous in nature and often results in a rich collection of intriguing phenomena, such as the formation of shocks or patterns, subdiffusive kinetics, traffic jams, and nonequilibrium phase transitions. These stochastic many-body features characterize transport processes in biology, soft condensed matter and, possibly, also in nanoscience. Inspired by these applications, a wide class of lattice-gas models has recently been considered. Building on the celebrated...

Gibbs–non-Gibbs properties for evolving Ising models on trees

Aernout C. D. van Enter, Victor N. Ermolaev, Giulio Iacobelli, Christof Külske (2012)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each...

Global existence versus blow up for some models of interacting particles

Piotr Biler, Lorenzo Brandolese (2006)

Colloquium Mathematicae

We study the global existence and space-time asymptotics of solutions for a class of nonlocal parabolic semilinear equations. Our models include the Nernst-Planck and Debye-Hückel drift-diffusion systems as well as parabolic-elliptic systems of chemotaxis. In the case of a model of self-gravitating particles, we also give a result on the finite time blow up of solutions with localized and oscillating complex-valued initial data, using a method due to S. Montgomery-Smith.

Growth and accretion of mass in an astrophysical model

Piotr Biler (1995)

Applicationes Mathematicae

We study asymptotic behavior of radial solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles. In particular, we consider stationary solutions in balls and in the whole space, self-similar solutions defined globally in time, blowing up self-similar solutions, and singularities of solutions that blow up in a finite time.

Growth and accretion of mass in an astrophysical model, II

Piotr Biler, Tadeusz Nadzieja (1995)

Applicationes Mathematicae

Radially symmetric solutions of a nonlocal Fokker-Planck equation describing the evolution of self-attracting particles in a bounded container are studied. Conditions ensuring either global-in-time existence of solutions or their finite time blow up are given.

Currently displaying 1 – 12 of 12

Page 1