Page 1 Next

Displaying 1 – 20 of 26

Showing per page

Macroscopic models of collective motion and self-organization

Pierre Degond, Amic Frouvelle, Jian-Guo Liu, Sebastien Motsch, Laurent Navoret (2012/2013)

Séminaire Laurent Schwartz — EDP et applications

In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view...

Many-body aspects of approach to equilibrium

Eric Carlen, M. C. Carvalho, Michael Loss (2000)

Journées équations aux dérivées partielles

Kinetic theory and approach to equilibrium is usually studied in the realm of the Boltzmann equation. With a few notable exceptions not much is known about the solutions of this equation and about its derivation from fundamental principles. In 1956 Mark Kac introduced a probabilistic model of N interacting particles. The velocity distribution is governed by a Markov semi group and the evolution of its single particle marginals is governed (in the infinite particle limit) by a caricature of the spatially...

Marking (1, 2) points of the brownian web and applications

C. M. Newman, K. Ravishankar, E. Schertzer (2010)

Annales de l'I.H.P. Probabilités et statistiques

The brownian web (BW), which developed from the work of Arratia and then Tóth and Werner, is a random collection of paths (with specified starting points) in one plus one dimensional space–time that arises as the scaling limit of the discrete web (DW) of coalescing simple random walks. Two recently introduced extensions of the BW, the brownian net (BN) constructed by Sun and Swart, and the dynamical brownian web (DyBW) proposed by Howitt and Warren, are (or should be) scaling limits of corresponding...

Markovian perturbation, response and fluctuation dissipation theorem

Amir Dembo, Jean-Dominique Deuschel (2010)

Annales de l'I.H.P. Probabilités et statistiques

We consider the Fluctuation Dissipation Theorem (FDT) of statistical physics from a mathematical perspective. We formalize the concept of “linear response function” in the general framework of Markov processes. We show that for processes out of equilibrium it depends not only on the given Markov process X(s) but also on the chosen perturbation of it. We characterize the set of all possible response functions for a given Markov process and show that at equilibrium they all satisfy the FDT. That is,...

Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect

Jaroslav Hron, Maria Neuss-Radu, Petra Pustějovská (2011)

Applications of Mathematics

In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...

Mathematically Modelling The Dissolution Of Solid Dispersions

Meere, Martin, McGinty, Sean, Pontrelli, Giuseppe (2017)

Proceedings of Equadiff 14

A solid dispersion is a dosage form in which an active ingredient (a drug) is mixed with at least one inert solid component. The purpose of the inert component is usually to improve the bioavailability of the drug. In particular, the inert component is frequently chosen to improve the dissolution rate of a drug that is poorly soluble in water. The construction of reliable mathematical models that accurately describe the dissolution of solid dispersions would clearly assist with their rational design....

Maximizing multi–information

Nihat Ay, Andreas Knauf (2006)

Kybernetika

Stochastic interdependence of a probability distribution on a product space is measured by its Kullback–Leibler distance from the exponential family of product distributions (called multi-information). Here we investigate low-dimensional exponential families that contain the maximizers of stochastic interdependence in their closure. Based on a detailed description of the structure of probability distributions with globally maximal multi-information we obtain our main result: The exponential family...

Mean-field evolution of fermionic systems

Marcello Porta (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

We study the dynamics of interacting fermionic systems, in the mean-field regime. We consider initial states which are close to quasi-free states and prove that, under suitable assumptions on the inital data and on the many-body interaction, the quantum evolution of the system is approximated by a time-dependent quasi-free state. In particular we prove that the evolution of the reduced one-particle density matrix converges, as the number of particles goes to infinity, to the solution of the time-dependent...

Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times

Anton Bovier, Michael Eckhoff, Véronique Gayrard, Markus Klein (2004)

Journal of the European Mathematical Society

We develop a potential theoretic approach to the problem of metastability for reversible diffusion processes with generators of the form ϵ Δ + F ( · ) on d or subsets of d , where F is a smooth function with finitely many local minima. In analogy to previous work on discrete Markov chains, we show that metastable exit times from the attractive domains of the minima of F can be related, up to multiplicative errors that tend to one as ϵ 0 , to the capacities of suitably constructed sets. We show that these capacities...

Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues

Anton Bovier, Véronique Gayrard, Markus Klein (2005)

Journal of the European Mathematical Society

We continue the analysis of the problem of metastability for reversible diffusion processes, initiated in [BEGK3], with a precise analysis of the low-lying spectrum of the generator. Recall that we are considering processes with generators of the form ϵ Δ + F ( · ) on d or subsets of d , where F is a smooth function with finitely many local minima. Here we consider only the generic situation where the depths of all local minima are different. We show that in general the exponentially small part of the spectrum...

Microscopic concavity and fluctuation bounds in a class of deposition processes

Márton Balázs, Júlia Komjáthy, Timo Seppäläinen (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove fluctuation bounds for the particle current in totally asymmetric zero range processes in one dimension with nondecreasing, concave jump rates whose slope decays exponentially. Fluctuations in the characteristic directions have order of magnitude t1/3. This is in agreement with the expectation that these systems lie in the same KPZ universality class as the asymmetric simple exclusion process. The result is via a robust argument formulated for a broad class of deposition-type processes....

Currently displaying 1 – 20 of 26

Page 1 Next