Page 1

Displaying 1 – 7 of 7

Showing per page

3-dimensional physically consistent diffusion in anisotropic media with memory

Michele Caputo (1998)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Some data on the flow of fluids exhibit properties which may not be interpreted with the classic theory of propagation of pressure and of fluids [21] based on the classic D’Arcy’s law which states that the flux is proportional to the pressure gradient. In order to obtain a better representation of the flow and of the pressure of fluids the law of D’Arcy is here modified introducing a memory formalisms operating on the flow as well as on the pressure gradient which implies a filtering of the pressure...

A model of dense fluids

R. Streater (1998)

Banach Center Publications

We obtain coupled reaction-diffusion equations for the density and temperature of a dense fluid, starting from a discrete model in which at most one particle can be present at each site. The model is constructed by the methods of statistical dynamics. We verify that the theory obeys the first and second laws of thermodynamics. Some remarks on measurement theory for the position of a particle are offered.

Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan (2005/2006)

Séminaire Équations aux dérivées partielles

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...

No production of entropy in the Euler fluid

R. F. Streater (2004)

Banach Center Publications

We derive the Euler equations as the hydrodynamic limit of a stochastic model of a hard-sphere gas. We show that the system does not produce entropy.

Simplified models of quantum fluids in nuclear physics

Bernard Ducomet (2001)

Mathematica Bohemica

We revisit a hydrodynamical model, derived by Wong from Time-Dependent-Hartree-Fock approximation, to obtain a simplified version of nuclear matter. We obtain well-posed problems of Navier-Stokes-Poisson-Yukawa type, with some unusual features due to quantum aspects, for which one can prove local existence. In the case of a one-dimensional nuclear slab, we can prove a result of global existence, by using a formal analogy with some model of nonlinear "viscoelastic" rods.

Currently displaying 1 – 7 of 7

Page 1