Displaying 101 – 120 of 499

Showing per page

Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part I

Gaetano Zampieri (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questo lavoro si dà una definizione di divergenza fra cronotopi della Relatività Generale e si costruisce un criterio per l'identificazione dei punti eventi di cronotopi divergenti che appartengono ad una classe consistente con la presenza di campi elettromagnetici nel vuoto.

Dimension vs. genus: A surface realization of the little k-cubes and an E operad

Ralph M. Kaufmann (2009)

Banach Center Publications

We define a new E operad based on surfaces with foliations which contains E k suboperads. We construct CW models for these operads and provide applications of these models by giving actions on Hochschild complexes (thus making contact with string topology), by giving explicit cell representatives for the Dyer-Lashof-Cohen operations for the 2-cubes and by constructing new Ω spectra. The underlying novel principle is that we can trade genus in the surface representation vs. the dimension k of the little...

Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system

Emmanuel Creusé, Serge Nicaise (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we prove the discrete compactness property for a discontinuous Galerkin approximation of Maxwell's system on quite general tetrahedral meshes. As a consequence, a discrete Friedrichs inequality is obtained and the convergence of the discrete eigenvalues to the continuous ones is deduced using the theory of collectively compact operators. Some numerical experiments confirm the theoretical predictions.

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Einstein-Euler equations for matter spacetimes with Gowdy symmetry

Philippe G. LeFloch (2008/2009)

Séminaire Équations aux dérivées partielles

We investigate the initial value problem for the Einstein-Euler equations of general relativity under the assumption of Gowdy symmetry on T 3 . Given an arbitrary initial data set, we establish the existence of a globally hyperbolic future development and we provide a global foliation of this spacetime in terms of a geometrically defined time-function coinciding with the area of the orbits of the symmetry group. This allows us to construct matter spacetimes with weak regularity which admit, both, impulsive...

Currently displaying 101 – 120 of 499