On Kato's inequality for the Weyl quantized relativistic Hamiltonian.
We discuss a recent approach to quantum field theoretical path integration on noncommutative geometries which imply UV/IR regularising finite minimal uncertainties in positions and/or momenta. One class of such noncommutative geometries arise as `momentum spaces' over curved spaces, for which we can now give the full set of commutation relations in coordinate free form, based on the Synge world function.