G-Réseaux dans un environnement aléatoire
We study networks with positive and negative customers (or Generalized networks of queues and signals) in a random environment. This environment may change the arrival rates, the routing probabilities, the service rates and also the effect of signals. We prove that the steady-state distribution has a product form. This property is obtained as a corollary of a much more general result on multidimensional Markov chains.
For a discrete modified queue, , where the service times of all customers served during any busy period are independent random variables with not necessarily identical distribution functions, the joint distribution of the busy period, the subsequent idle period and the number of customers served during the busy period is derived. The formulae presented are in a convenient form for practical use. The paper is a continuation of [5], where the discrete modified queue has been studied.
For a double channel Markovian queue with finite waiting space and unequal service rates at the two counters, the difference equations satisfied by the Laplace transforms of the state probabilities at finite time are solved and the state probabilities have been obtained. The closed form of the state probabilities can be used to obtain the important parameters of the system.
This paper studies the machine repair problem consisting of M operating machines with S spare machines, and R servers (repairmen) who leave for a vacation of random length when there are no failed machines queuing up for repair in the repair facility. At the end of the vacation the servers return to the repair facility and operate one of three vacation policies: single vacation, multiple vacation, and hybrid single/multiple vacation. The Markov process and the matrix-geometric approach are used...
This paper considers an M/M/R/N queue with heterogeneous servers in which customers balk (do not enter) with a constant probability . We develop the maximum likelihood estimates of the parameters for the M/M/R/N queue with balking and heterogeneous servers. This is a generalization of the M/M/2 queue with heterogeneous servers (without balking), and the M/M/2/N queue with balking and heterogeneous servers in the literature. We also develop the confidence interval formula for the parameter , the...
This paper considers an M/M/R/N queue with heterogeneous servers in which customers balk (do not enter) with a constant probability (1 - b). We develop the maximum likelihood estimates of the parameters for the M/M/R/N queue with balking and heterogeneous servers. This is a generalization of the M/M/2 queue with heterogeneous servers (without balking), and the M/M/2/N queue with balking and heterogeneous servers in the literature. We also develop the confidence interval formula for the parameter...