Page 1

Displaying 1 – 5 of 5

Showing per page

Integer Linear Programming applied to determining monic hyperbolic irreducible polynomials with integer coefficients and span less than 4

Souad El Otmani, Armand Maul, Georges Rhin, Jean-Marc Sac-Épée (2013)

Journal de Théorie des Nombres de Bordeaux

In this work, we propose a new method to find monic irreducible polynomials with integer coefficients, only real roots, and span less than 4. The main idea is to reduce the search of such polynomials to the solution of Integer Linear Programming problems. In this frame, the coefficients of the polynomials we are looking for are the integer unknowns. We give inequality constraints specified by the properties that the polynomials should have, such as the typical distribution of their roots. These...

Integer programming approaches for minimum stabbing problems

Breno Piva, Cid C. de Souza, Yuri Frota, Luidi Simonetti (2014)

RAIRO - Operations Research - Recherche Opérationnelle

The problem of finding structures with minimum stabbing number has received considerable attention from researchers. Particularly, [10] study the minimum stabbing number of perfect matchings (mspm), spanning trees (msst) and triangulations (mstr) associated to set of points in the plane. The complexity of the mstr remains open whilst the other two are known to be 𝓝𝓟-hard. This paper presents integer programming (ip) formulations for these three problems, that allowed us to...

Currently displaying 1 – 5 of 5

Page 1