Page 1

Displaying 1 – 4 of 4

Showing per page

New Farkas-type constraint qualifications in convex infinite programming

Nguyen Dinh, Miguel A. Goberna, Marco A. López, Ta Quang Son (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This paper provides KKT and saddle point optimality conditions, duality theorems and stability theorems for consistent convex optimization problems posed in locally convex topological vector spaces. The feasible sets of these optimization problems are formed by those elements of a given closed convex set which satisfy a (possibly infinite) convex system. Moreover, all the involved functions are assumed to be convex, lower semicontinuous and proper (but not necessarily real-valued). The key result...

Nonlinear dynamic systems and optimal control problems on time scales

Yunfei Peng, Xiaoling Xiang, Yang Jiang (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula...

Nonlinear dynamic systems and optimal control problems on time scales*

Yunfei Peng, Xiaoling Xiang, Yang Jiang (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear dynamic systems on time scales. Introducing the reasonable weak solution of nonlinear dynamic systems, the existence of the weak solution for the nonlinear dynamic systems on time scales and its properties are presented. Discussing L1-strong-weak lower semicontinuity of integral functional, we give sufficient conditions for the existence of optimal controls. Using integration by parts formula...

Nonsmooth Problems of Calculus of Variations via Codifferentiation

Maxim Dolgopolik (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper multidimensional nonsmooth, nonconvex problems of the calculus of variations with codifferentiable integrand are studied. Special classes of codifferentiable functions, that play an important role in the calculus of variations, are introduced and studied. The codifferentiability of the main functional of the calculus of variations is derived. Necessary conditions for the extremum of a codifferentiable function on a closed convex set and its applications to the nonsmooth problems of...

Currently displaying 1 – 4 of 4

Page 1