The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Semi–smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an estimate for the penalized...
Semi–smooth Newton methods are analyzed for a class of variational
inequalities in infinite dimensions.
It is shown that they are equivalent to certain active set strategies.
Global and local super-linear convergence are
proved. To overcome the phenomenon of finite speed of propagation of
discretized problems a penalty version
is used as the basis for a continuation procedure to speed up convergence.
The choice of the penalty parameter
can be made on the basis of an L∞ estimate
for the penalized...
In this paper sufficient second order optimality conditions for optimal control problems
subject to stationary variational inequalities of obstacle type are derived. Since
optimality conditions for such problems always involve measures as Lagrange multipliers,
which impede the use of efficient Newton type methods, a family of regularized problems is
introduced. Second order sufficient optimality conditions are derived for the regularized
problems...
In this paper sufficient second order optimality conditions for optimal control problems
subject to stationary variational inequalities of obstacle type are derived. Since
optimality conditions for such problems always involve measures as Lagrange multipliers,
which impede the use of efficient Newton type methods, a family of regularized problems is
introduced. Second order sufficient optimality conditions are derived for the regularized
problems...
Currently displaying 1 –
4 of
4