Displaying 1641 – 1660 of 2805

Showing per page

On an iterative method for unconstrained optimization

Ioannis K. Argyros (2015)

Applicationes Mathematicae

We present a local and a semi-local convergence analysis of an iterative method for approximating zeros of derivatives for solving univariate and unconstrained optimization problems. In the local case, the radius of convergence is obtained, whereas in the semi-local case, sufficient convergence criteria are presented. Numerical examples are also provided.

On approximation in multistage stochastic programs: Markov dependence

Vlasta Kaňková, Martin Šmíd (2004)

Kybernetika

A general multistage stochastic programming problem can be introduced as a finite system of parametric (one-stage) optimization problems with an inner type of dependence. Evidently, this type of the problems is rather complicated and, consequently, it can be mostly solved only approximately. The aim of the paper is to suggest some approximation solution schemes. To this end a restriction to the Markov type of dependence is supposed.

On co-bicliques

Denis Cornaz (2007)

RAIRO - Operations Research

A co-biclique of a simple undirected graph G = (V,E) is the edge-set of two disjoint complete subgraphs of G. (A co-biclique is the complement of a biclique.) A subset F ⊆ E is an independent of G if there is a co-biclique B such that F ⊆ B, otherwise F is a dependent of G. This paper describes the minimal dependents of G. (A minimal dependent is a dependent C such that any proper subset of C is an independent.) It is showed that a minimum-cost dependent set of G can be determined in polynomial...

On computation of C-stationary points for equilibrium problems with linear complementarity constraints via homotopy method

Michal Červinka (2010)

Kybernetika

In the paper we consider EPCCs with convex quadratic objective functions and one set of complementarity constraints. For this class of problems we propose a possible generalization of the homotopy method for finding stationary points of MPCCs. We analyze the difficulties which arise from this generalization. Numerical results illustrate the performance for randomly generated test problems.

On constant-weight TSP-tours

Scott Jones, P. Mark Kayll, Bojan Mohar, Walter D. Wallis (2003)

Discussiones Mathematicae Graph Theory

Is it possible to label the edges of Kₙ with distinct integer weights so that every Hamilton cycle has the same total weight? We give a local condition characterizing the labellings that witness this question's perhaps surprising affirmative answer. More generally, we address the question that arises when "Hamilton cycle" is replaced by "k-factor" for nonnegative integers k. Such edge-labellings are in correspondence with certain vertex-labellings, and the link allows us to determine (up to a constant...

Currently displaying 1641 – 1660 of 2805