A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference.
In this paper a problem of consumption and investment is presented as a model of a discounted Markov decision process with discrete-time. In this problem, it is assumed that the wealth is affected by a production function. This assumption gives the investor a chance to increase his wealth before the investment. For the solution of the problem there is established a suitable version of the Euler Equation (EE) which characterizes its optimal policy completely, that is, there are provided conditions...
This paper investigates the problem of maximizing the revenue of a telecommunications operator by simultaneously pricing point-to-point services and allocating bandwidth in its network, while facing competition. Customers are distributed into market segments, i.e., groups of customers with a similar preference for the services. This preference is expressed using utility functions, and customers choose between the offers of the operator and of the competition according to their utility. We model...
Prediction of outstanding liabilities is an important problem in non-life insurance. In the framework of the Solvency II Project, the best estimate must be derived by well defined probabilistic models properly calibrated on the relevant claims experience. A general model along these lines was proposed earlier by Norberg (1993, 1999), who suggested modelling claim arrivals and payment streams as a marked point process. In this paper we specify that claims occur in [0,1] according to a Poisson point...
We study the problem of designing a distributed voting scheme for electing a candidate that maximizes the preferences of a set of agents. We assume the preference of agent i for candidate j is a real number xi,j, and we do not make any assumptions on the mechanism generating these preferences. We show simple randomized voting schemes guaranteeing the election of a candidate whose expected total preference is nearly the highest among all candidates. The algorithms we consider are designed so that...