Displaying 41 – 60 of 67

Showing per page

Relative Measurement and Its Generalization in Decision Making. Why Pairwise Comparisons are Central in Mathematics for the Measurement of Intangible Factors. The Analytic Hierarchy/Network Process.

Thomas L. Saaty (2008)

RACSAM

According to the great mathematician Henri Lebesgue, making direct comparisons of objects with regard to a property is a fundamental mathematical process for deriving measurements. Measuring objects by using a known scale first then comparing the measurements works well for properties for which scales of measurement exist. The theme of this paper is that direct comparisons are necessary to establish measurements for intangible properties that have no scales of measurement. In that case the value...

Repeated games with asymmetric information modeling financial markets with two risky assets

Victoria Kreps, Victor Domansky (2013)

RAIRO - Operations Research - Recherche Opérationnelle

We consider multistage bidding models where two types of risky assets (shares) are traded between two agents that have different information on the liquidation prices of traded assets. These prices are random integer variables that are determined by the initial chance move according to a probability distribution p over the two-dimensional integer lattice that is known to both players. Player 1 is informed on the prices of both types of shares, but Player 2 is not. The bids may take any integer values....

Representation of Itô integrals by Lebesgue/Bochner integrals

Qi Lü, Jiongmin Yong, Xu Zhang (2012)

Journal of the European Mathematical Society

In [Yong 2004], it was proved that as long as the integrand has certain properties, the corresponding Itô integral can be written as a (parameterized) Lebesgue integral (or a Bochner integral). In this paper, we show that such a question can be answered in a more positive and refined way. To do this, we need to characterize the dual of the Banach space of some vector-valued stochastic processes having different integrability with respect to the time variable and the probability measure. The later...

Risk aversion, prudence and mixed optimal saving models

Irina Georgescu (2014)

Kybernetika

The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with...

Risk measures versus ruin theory for the calculation of solvency capital for long-term life insurances

Pierre Devolder, Adrien Lebègue (2016)

Dependence Modeling

The purpose of this paper is twofold. First we consider a ruin theory approach along with risk measures in order to determine the solvency capital of long-term guarantees such as life insurances or pension products. Secondly, for such products,we challenge the definition of the Solvency Capital Requirement (SCR) under the Solvency II (SII) regulatory framework based on a yearly viewpoint. Several methods for the calculation of the solvency capital are presented. We start our study with risk measures...

Risk minimization in the model with transaction costs

Michał Motoczyński (2003)

Applicationes Mathematicae

The problem of hedging a contingent claim with minimization of quadratic risk is studied. Existence of an optimal strategy for the model with proportional transaction cost and nondelayed observation is shown.

Risk objectives in two-stage stochastic programming models

Jitka Dupačová (2008)

Kybernetika

In applications of stochastic programming, optimization of the expected outcome need not be an acceptable goal. This has been the reason for recent proposals aiming at construction and optimization of more complicated nonlinear risk objectives. We will survey various approaches to risk quantification and optimization mainly in the framework of static and two-stage stochastic programs and comment on their properties. It turns out that polyhedral risk functionals introduced in Eichorn and Römisch...

Currently displaying 41 – 60 of 67