Page 1

Displaying 1 – 2 of 2

Showing per page

Host Factors in Viral Life Cycles

G. Pérez-Vilaró, J. Jungfleisch, V. Saludes, N. Scheller, M. Giménez-Barcons, J. Díez (2012)

Mathematical Modelling of Natural Phenomena

Viruses are obligate intracellular parasites that rely on the host cell for expansion. With the development of global analyses techniques like transcriptomics, proteomics and siRNA library screening of complete cellular gene sets, a large range of host cell factors have been discovered that either support or restrict virus growth. Here we summarize some of the recent findings and focus our discussion on the hepatitis C virus and the human immunodeficiency...

Human Immunodeficiency Virus Infection : from Biological Observations to Mechanistic Mathematical Modelling

G. Bocharov, V. Chereshnev, I. Gainova, S. Bazhan, B. Bachmetyev, J. Argilaguet, J. Martinez, A. Meyerhans (2012)

Mathematical Modelling of Natural Phenomena

HIV infection is multi-faceted and a multi-step process. The virus-induced pathogenic mechanisms are manifold and mediated through a range of positive and negative feedback regulations of immune and physiological processes engaged in virus-host interactions. The fundamental questions towards understanding the pathogenesis of HIV infection are now shifting to ‘dynamic’ categories: (i) why is the HIV-immune response equilibrium finally disrupted? (ii)...

Currently displaying 1 – 2 of 2

Page 1