Page 1

Displaying 1 – 5 of 5

Showing per page

Fast and accurate methods of independent component analysis: A survey

Petr Tichavský, Zbyněk Koldovský (2011)

Kybernetika

This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG).

Fluid–particle shear flows

Bertrand Maury (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fluid–particle shear flows

Bertrand Maury (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fully implicit ADI schemes for solving the nonlinear Poisson-Boltzmann equation

Weihua Geng, Shan Zhao (2013)

Molecular Based Mathematical Biology

The Poisson-Boltzmann (PB) model is an effective approach for the electrostatics analysis of solvated biomolecules. The nonlinearity associated with the PB equation is critical when the underlying electrostatic potential is strong, but is extremely difficult to solve numerically. In this paper, we construct two operator splitting alternating direction implicit (ADI) schemes to efficiently and stably solve the nonlinear PB equation in a pseudo-transient continuation approach. The operator splitting...

Currently displaying 1 – 5 of 5

Page 1