Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Mathematical Model of Blood Flow in an Anatomically Detailed Arterial Network of the Arm

Sansuke M. Watanabe, Pablo J. Blanco, Raúl A. Feijóo (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A distributed-parameter (one-dimensional) anatomically detailed model for the arterial network of the arm is developed in order to carry out hemodynamics simulations. This work focuses on the specific aspects related to the model set-up. In this regard, stringent anatomical and physiological considerations have been pursued in order to construct the arterial topology and to provide a systematic estimation of the involved parameters. The model comprises 108 arterial segments, with 64 main arteries...

Mathematical model of mixing in Rumen

Wiesław Szlenk (1996)

Applicationes Mathematicae

A mathematical model of mixing food in rumen is presented. The model is based on the idea of the Baker Transformation, but exhibits some different phenomena: the transformation does not mix points at all in some parts of the phase space (and under some conditions mixes them strongly in other parts), as observed in ruminant animals.

Mathematical model of tumour cord growth along the source of nutrient

S. Astanin, A. Tosin (2010)

Mathematical Modelling of Natural Phenomena

A mathematical model of the tumour growth along a blood vessel is proposed. The model employs the mixture theory approach to describe a tissue which consists of cells, extracellular matrix and liquid. The growing tumour tissue is supposed to be surrounded by the host tissue. Tumours where complete oxydation of glucose prevails are considered. Special attention is paid to consistent description of oxygen consumption and growth processes based on the energy balance. A finite difference numerical...

Modelling of Dynamic Problems in Biomechanics

I. Petrov, Y. Bolotskikh, A. Vasyukov (2011)

Mathematical Modelling of Natural Phenomena

This paper is devoted to solving of dynamic problems in biomechanics that require detailed study of fast processes. Numerical method of characteristics is used to model the temporal development of the processes with high accuracy.

Multiphase and Multiscale Trends in Cancer Modelling

L. Preziosi, A. Tosin (2009)

Mathematical Modelling of Natural Phenomena

While drawing a link between the papers contained in this issue and those present in a previous one (Vol. 2, Issue 3), this introductory article aims at putting in evidence some trends and challenges on cancer modelling, especially related to the development of multiphase and multiscale models.

Segregation of Flowing Blood: Mathematical Description

A. Tokarev, G. Panasenko, F. Ataullakhanov (2011)

Mathematical Modelling of Natural Phenomena

Blood rheology is completely determined by its major corpuscles which are erythrocytes, or red blood cells (RBCs). That is why understanding and correct mathematical description of RBCs behavior in blood is a critical step in modelling the blood dynamics. Various phenomena provided by RBCs such as aggregation, deformation, shear-induced diffusion and non-uniform radial distribution affect the passage of blood through the vessels. Hence, they have...

Small amplitude homogenization applied to models of non-periodic fibrous materials

David Manceau (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we compare a biomechanics empirical model of the heart fibrous structure to two models obtained by a non-periodic homogenization process. To this end, the two homogenized models are simplified using the small amplitude homogenization procedure of Tartar, both in conduction and in elasticity. A new small amplitude homogenization expansion formula for a mixture of anisotropic elastic materials is also derived and allows us to obtain a third simplified model.

Currently displaying 21 – 38 of 38

Previous Page 2