Displaying 1041 – 1060 of 3842

Showing per page

Design of the state predictive model following control system with time-delay

Dazhong Wang, Shujing Wu, Shigenori Okubo (2009)

International Journal of Applied Mathematics and Computer Science

Time-delay systems exist in many engineering fields such as transportation systems, communication systems, process engineering and, more recently, networked control systems. It usually results in unsatisfactory performance and is frequently a source of instability, so the control of time-delay systems is practically important. In this paper, a design of the state predictive model following control system (PMFCS) with time-delay is discussed. The bounded property of the internal states for the control...

Design of unknown input fractional-order observers for fractional-order systems

Ibrahima N'Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski (2013)

International Journal of Applied Mathematics and Computer Science

This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the...

Designing a ship course controller by applying the adaptive backstepping method

Anna Witkowska, Roman Śmierzchalski (2012)

International Journal of Applied Mathematics and Computer Science

The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a seagoing ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system performance. A realistic...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: Existence and approximation

Michael A. Demetriou, Azmy S. Ackleh, Simeon Reich (2000)

Kybernetika

The purpose of this note is to investigate the existence of solutions to a class of second order distributed parameter systems with sudden changes in the input term. The class of distributed parameter systems under study is often encountered in flexible structures and structure-fluid interaction systems that use smart actuators. A failure in the actuator is modeled as either an abrupt or an incipient change of the actuator map whose magnitude is a function of the measurable output. A Galerkin-based...

Detection and accommodation of second order distributed parameter systems with abrupt changes in input term: stability and adaptation

Michael A. Demetriou, Marios M. Polycarpou (1998)

Kybernetika

In this note, we employ nonlinear on-line parameter estimation methods based on adaptive neural network approximators for detecting changes due to actuator faults in a class of second order distributed parameter systems. The motivating example is a cantilevered beam actuated via a pair of piezoceramic patches. We examine changes in the control input term, which provide a simple and practical model of actuator failures. Using Lyapunov redesign methods, a stable learning scheme for fault diagnosis...

Detection and identification of loss of efficiency faults of flight actuators

Daniel Ossmann, Andreas Varga (2015)

International Journal of Applied Mathematics and Computer Science

We propose linear parameter-varying (LPV) model-based approaches to the synthesis of robust fault detection and diagnosis (FDD) systems for loss of efficiency (LOE) faults of flight actuators. The proposed methods are applicable to several types of parametric (or multiplicative) LOE faults such as actuator disconnection, surface damage, actuator power loss or stall loads. For the detection of these parametric faults, advanced LPV-model detection techniques are proposed, which implicitly provide...

Determination of the initial stress tensor from deformation of underground opening in excavation process

Josef Malík, Alexej Kolcun (2022)

Applications of Mathematics

A method for the detection of the initial stress tensor is proposed. The method is based on measuring distances between pairs of points located on the wall of underground opening in the excavation process. This methods is based on solving twelve auxiliary problems in the theory of elasticity with force boundary conditions, which is done using the least squares method. The optimal location of the pairs of points on the wall of underground openings is studied. The pairs must be located so that the...

Determination of the initial stress tensor from deformation of underground opening -- theoretical background and applications

Malík, Josef, Kolcun, Alexej (2023)

Programs and Algorithms of Numerical Mathematics

In this paper a method for the detection of initial stress tensor is proposed. The method is based on measuring distances between some pairs of points located on the wall of underground opening in the excavation process. This methods is based on the solution of eighteen auxiliary problems in the theory of elasticity with force boundary conditions. The optimal location of the pairs of points on the wall of underground work is studied. The pairs must be located so that the condition number of a certain...

Determining the domain of attraction of hybrid non–linear systems using maximal Lyapunov functions

Szabolcs Rozgonyi, Katalin M. Hangos, Gábor Szederkényi (2010)

Kybernetika

In this article a method is presented to find systematically the domain of attraction (DOA) of hybrid non-linear systems. It has already been shown that there exists a sequence of special kind of Lyapunov functions V n in a rational functional form approximating a maximal Lyapunov function V M that can be used to find an estimation for the DOA. Based on this idea, an improved method has been developed and implemented in a Mathematica-package to find such Lyapunov functions V n for a class of hybrid (piecewise...

Deterministic Markov Nash equilibria for potential discrete-time stochastic games

Alejandra Fonseca-Morales (2022)

Kybernetika

In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic...

Deterministic optimal policies for Markov control processes with pathwise constraints

Armando F. Mendoza-Pérez, Onésimo Hernández-Lerma (2012)

Applicationes Mathematicae

This paper deals with discrete-time Markov control processes in Borel spaces with unbounded rewards. Under suitable hypotheses, we show that a randomized stationary policy is optimal for a certain expected constrained problem (ECP) if and only if it is optimal for the corresponding pathwise constrained problem (pathwise CP). Moreover, we show that a certain parametric family of unconstrained optimality equations yields convergence properties that lead to an approximation scheme which allows us to...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In the constrained...

Deterministic state-constrained optimal control problems without controllability assumptions

Olivier Bokanowski, Nicolas Forcadel, Hasnaa Zidani (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In the present paper, we consider nonlinear optimal control problems with constraints on the state of the system. We are interested in the characterization of the value function without any controllability assumption. In the unconstrained case, it is possible to derive a characterization of the value function by means of a Hamilton-Jacobi-Bellman (HJB) equation. This equation expresses the behavior of the value function along the trajectories arriving or starting from any position x. In...

Currently displaying 1041 – 1060 of 3842