Loading [MathJax]/extensions/MathZoom.js
Semi-smooth Newton methods are analyzed for the Signorini problem. A proper regularization is introduced which guarantees that the semi-smooth Newton method is superlinearly convergent for each regularized problem. Utilizing a shift motivated by an augmented Lagrangian framework, to the regularization term, the solution to each regularized problem is feasible. Convergence of the regularized problems is shown and a report on numerical experiments is given.
The paper studies the problem of lowering the orders of input derivatives in nonlinear generalized state equations via generalized coordinate transformation. An alternative, computation-oriented proof is presented for the theorem, originally proved by Delaleau and Respondek, giving necessary and sufficient conditions for existence of such a transformation, in terms of commutativity of certain vector fields. Moreover, the dual conditions in terms of 1-forms have been derived, allowing to calculate...
Currently displaying 1 –
2 of
2