Page 1

Displaying 1 – 10 of 10

Showing per page

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of a boundary layer equation

Jean-Marie Buchot, Jean-Pierre Raymond (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary solution, in the presence of perturbations. More precisely, we want to stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state equation is a doubly degenerate linear parabolic equation. Because of the degenerate character of the state equation, the classical existence...

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2003)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a L Q control problem associated with the linearized equation.

Feedback stabilization of Navier–Stokes equations

Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

One proves that the steady-state solutions to Navier–Stokes equations with internal controllers are locally exponentially stabilizable by linear feedback controllers provided by a LQ control problem associated with the linearized equation.

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system

Mehdi Badra (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended...

Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions

Antonios Armaou, Panagiotis Christofides (2001)

International Journal of Applied Mathematics and Computer Science

This article presents a methodology for the synthesis of finite-dimensional nonlinear output feedback controllers for nonlinear parabolic partial differential equation (PDE) systems with time-dependent spatial domains. Initially, the nonlinear parabolic PDE system is expressed with respect to an appropriate time-invariant spatial coordinate, and a representative (with respect to different initial conditions and input perturbations) ensemble of solutions of the resulting time-varying PDE system is...

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Currently displaying 1 – 10 of 10

Page 1