A class of impulsive pulse-width sampler systems and its steady-state control in infinite dimensional spaces.
We consider chained systems that model various systems of mechanical or biological origin. It is known according to Brockett that this class of systems, which are controllable, is not stabilizable by continuous stationary feedback (i.e. independent of time). Various approaches have been proposed to remedy this problem, especially instationary or discontinuous feedbacks. Here, we look at another stabilization strategy (by continuous stationary or...
We consider chained systems that model various systems of mechanical or biological origin. It is known according to Brockett that this class of systems, which are controllable, is not stabilizable by continuous stationary feedback (i.e. independent of time). Various approaches have been proposed to remedy this problem, especially instationary or discontinuous feedbacks. Here, we look at another stabilization strategy (by continuous stationary or...
In this paper the control of robotic manipulation is investigated. Manipulation system analysis and control are approached in a general framework. The geometric aspect of manipulation system dynamics is strongly emphasized by using the well developed techniques of geometric multivariable control theory. The focus is on the (functional) control of the crucial outputs in robotic manipulation, namely the reachable internal forces and the rigid-body object motions. A geometric control procedure is outlined...
This paper deals with the problem of controlling contact forces in robotic manipulators with general kinematics. The main focus is on control of grasping contact forces exerted on the manipulated object. A visco-elastic model for contacts is adopted. The robustness of the decoupling controller with respect to the uncertainties affecting system parameters is investigated. Sufficient conditions for the invariance of decoupling action under perturbations on the contact stiffness and damping parameters...
This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained...
An original Nyquist-based frequency domain robust decentralized controller (DC) design technique for robust stability and guaranteed nominal performance is proposed, applicable for continuous-time uncertain systems described by a set of transfer function matrices. To provide nominal performance, interactions are included in individual design using one selected characteristic locus of the interaction matrix, used to reshape frequency responses of decoupled subsystems; such modified subsystems are...
The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic...
The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-derivative...
We derive absolute stability results for well-posed infinite-dimensional systems which, in a sense, extend the well-known circle criterion to the case that the underlying linear system is the series interconnection of an exponentially stable well-posed infinite-dimensional system and an integrator and the nonlinearity ϕ satisfies a sector condition of the form (ϕ(u),ϕ(u) - au) ≤ 0 for some constant a>0. These results are used to prove convergence and stability properties of low-gain integral...
We compare a general controlled diffusion process with a deterministic system where a second controller drives the disturbance against the first controller. We show that the two models are equivalent with respect to two properties: the viability (or controlled invariance, or weak invariance) of closed smooth sets, and the existence of a smooth control Lyapunov function ensuring the stabilizability of the system at an equilibrium.