Internal properness and stability in linear systems
This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed...
Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part of the controlled object as , and show the bounded of internal states by separating the nonlinear part into . Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.
This paper presents a series of new results in finite and infinite-memory modeling of discrete-time fractional differences. The introduced normalized finite fractional difference is shown to properly approximate its fractional difference original, in particular in terms of the steady-state properties. A stability analysis is also presented and a recursive computation algorithm is offered for finite fractional differences. A thorough analysis of computational and accuracy aspects is culminated with...
The article is a survey on problem of the theorem of Hurwitz. The starting point of explanations is Schur's decomposition theorem for polynomials. It is showed how to obtain the well-known criteria on the distribution of roots of polynomials. The theorem on uniqueness of constants in Schur's decomposition seems to be new.
In this paper, we present a vaccination model with multiple transmission ways and derive the control reproduction number. The stability analysis of both the disease-free and endemic equilibria is carried out, and bifurcation theory is applied to explore a variety of dynamics of this model. In addition, we present numerical simulations to verify the model predictions. Mathematical results suggest that vaccination is helpful for disease control by decreasing the control reproduction number below unity....
The problems of both single and multiple delays for neutral-type uncertain systems are considered. First, for single neutral time delay systems, based on a Razumikhin-type theorem, some delay-dependent stability criteria are derived in terms of the Lyapunov equation for various classes of model transformation and decomposition techniques. Second, robust control for neutral systems with multiple time delays is considered. Finally, we demonstrate numerical examples to illustrate the effectiveness...
A cascade scheme for passivity-based stabilization of a wide class of nonlinear systems is proposed in this paper. Starting from the definitions and basic concepts of passivity-based stabilization via feedback (which are applicable to minimum phase nonlinear systems expressed in their normal forms) a cascade stabilization scheme is proposed for minimum and non-minimum phase nonlinear systems where the constraint of stable zero dynamics imposed by previous stabilization approaches is abandoned. Simulation...
We study the problem of simultaneous stabilization for the algebra . Invertible pairs , j = 1,..., n, in a commutative unital algebra are called simultaneously stabilizable if there exists a pair (α,β) of elements such that is invertible in this algebra for j = 1,..., n. For n = 2, the simultaneous stabilization problem admits a positive solution for any data if and only if the Bass stable rank of the algebra is one. Since has stable rank two, we are faced here with a different situation....