Displaying 161 – 180 of 802

Showing per page

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controller design for bush-type 1-d wave networks∗

Yaxuan Zhang, Genqi Xu (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we introduce a new method for feedback controller design for the complex distributed parameter networks governed by wave equations, which ensures the stability of the closed loop system. This method is based on the uniqueness theory of ordinary differential equations and cutting-edge approach in the graph theory, but it is not a simple extension. As a realization of this idea, we investigate a bush-type wave network. The well-posedness of the closed loop system is obtained via Lax-Milgram’s...

Controlling a non-homogeneous Timoshenko beam with the aid of the torque

Grigory M. Sklyar, Grzegorz Szkibiel (2013)

International Journal of Applied Mathematics and Computer Science

Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally...

Decentralized control and synchronization of time-varying complex dynamical network

Wei-Song Zhong, Jovan D. Stefanovski, Georgi M. Dimirovski, Jun Zhao (2009)

Kybernetika

A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...

Decentralized control for large-scale systems with time-varying delay and unmatched uncertainties

Wen-Jeng Liu (2011)

Kybernetika

Many real-world systems contain uncertainties and with time-varying delays, also, they have become larger and more complicated. Hence, a new decentralized variable structure control law is proposed for a class of uncertain large-scale system with time varying delay in the interconnection and time varying unmatched uncertainties in the state matrix. The proposed decentralized control law for the large-scale time-varying delay system is realized independently through the delayed terms and it can drive...

Decentralized control of interconnected linear systems with delayed states

Carlos E. de Souza (2001)

Kybernetika

This paper addresses the problems of stability analysis and decentralized control of interconnected linear systems with constant time-delays in the state of each subsystems as well as in the interconnections. We develop delay- dependent methods of stability analysis and decentralized stabilization via linear memoryless state-feedback. The proposed methods are given in terms of linear matrix inequalities. Extensions of the decentralized stabilization result to more complex control problems, such...

Decentralized output regulation of large scale nonlinear systems with delay

Zhengtao Ding (2009)

Kybernetika

This paper deals with output regulation of a class of large-scale nonlinear systems with delays. Each of the subsystems is in the output feedback form, with nonlinear functions of the subsystem output and the outputs of other subsystems. The system outputs are subject to unknown constant delays. Both the system dynamics and the measurements are subject to unknown disturbances generated from unknown linear exosystems. Decentralized control design approach is adopted to design local controllers using...

Decentralized robust tracking control of uncertain large scale systems with multiple delays in the interconnections

Hansheng Wu (2009)

Kybernetika

The problem of the decentralized robust tracking and model following is considered for a class of uncertain large scale systems including time-varying delays in the interconnections. On the basis of the Razumikhin-type theorem and the Lyapunov stability theory, a class of decentralized memoryless local state feedback controllers is proposed for robust tracking of dynamical signals. It is shown that by employing the proposed decentralized robust tracking controllers, one can guarantee that the tracking...

Currently displaying 161 – 180 of 802