Page 1 Next

Displaying 1 – 20 of 139

Showing per page

Scope and generalization of the theory of linearly constrained linear regulator

Paolo Alessandro, Elena de Santis (1999)

Kybernetika

A previous paper by the same authors presented a general theory solving (finite horizon) feasibility and optimization problems for linear dynamic discrete-time systems with polyhedral constraints. We derived necessary and sufficient conditions for the existence of solutions without assuming any restrictive hypothesis. For the solvable cases we also provided the inequative feedback dynamic system, that generates by forward recursion all and nothing but the feasible (or optimal, according to the cases)...

Self-tuning controllers based on orthonormal functions

Jozef Hejdiš, Štefan Kozák, Ľubica Juráčková (2000)

Kybernetika

Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.

Separation principle for nonlinear systems: a bilinear approach

Mohamed Hammami, Hamadi Jerbi (2001)

International Journal of Applied Mathematics and Computer Science

In this paper we investigate the local stabilizability of single-input nonlinear affine systems by means of an estimated state feedback law given by a bilinear observer. The associated bilinear approximating system is assumed to be observable for any input and stabilizable by a homogeneous feedback law of degree zero. Furthermore, we discuss the case of planar systems which admit bad inputs (i.e. the ones that make bilinear systems unobservable). A separation principle for such systems is given.

Simple conditions for practical stability of positive fractional discrete-time linear systems

Mikołaj Busłowicz, Tadeusz Kaczorek (2009)

International Journal of Applied Mathematics and Computer Science

In the paper the problem of practical stability of linear positive discrete-time systems of fractional order is addressed. New simple necessary and sufficient conditions for practical stability and for practical stability independent of the length of practical implementation are established. It is shown that practical stability of the system is equivalent to asymptotic stability of the corresponding standard positive discrete-time systems of the same order. The discussion is illustrated with numerical...

Simple environment for developing methods of controlling chaos in spatially distributed systems

Łukasz Korus (2011)

International Journal of Applied Mathematics and Computer Science

The paper presents a simple mathematical model called a coupled map lattice (CML). For some range of its parameters, this model generates complex, spatiotemporal behavior which seems to be chaotic. The main purpose of the paper is to provide results of stability analysis and compare them with those obtained from numerical simulation. The indirect Lyapunov method and Lyapunov exponents are used to examine the dependence on initial conditions. The net direction phase is introduced to measure the symmetry...

Simultaneous output-feedback stabilization for continuous systems in Banach spaces

Fouad M. AL-Sunni, Frank L. Lewis (1998)

Kybernetika

A design technique for the stabilization of M linear systems by one constant output-feedback controller is developed. The design equations are functions of the state and the control weighting matrices. An example of the stabilization of an aircraft at different operating points is given.

Simultaneous stabilization in A ( )

Raymond Mortini, Brett D. Wick (2009)

Studia Mathematica

We study the problem of simultaneous stabilization for the algebra A ( ) . Invertible pairs ( f j , g j ) , j = 1,..., n, in a commutative unital algebra are called simultaneously stabilizable if there exists a pair (α,β) of elements such that α f j + β g j is invertible in this algebra for j = 1,..., n. For n = 2, the simultaneous stabilization problem admits a positive solution for any data if and only if the Bass stable rank of the algebra is one. Since A ( ) has stable rank two, we are faced here with a different situation....

Single input controllability of a simplified fluid-structure interaction model

Yuning Liu, Takéo Takahashi, Marius Tucsnak (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study a controllability problem for a simplified one dimensional model for the motion of a rigid body in a viscous fluid. The control variable is the velocity of the fluid at one end. One of the novelties brought in with respect to the existing literature consists in the fact that we use a single scalar control. Moreover, we introduce a new methodology, which can be used for other nonlinear parabolic systems, independently of the techniques previously used for the linearized problem....

Sixty years of cybernetics: a comparison of approaches to solving the H 2 control problem

Vladimír Kučera (2008)

Kybernetika

The H2 control problem consists of stabilizing a control system while minimizing the H2 norm of its transfer function. Several solutions to this problem are available. For systems in state space form, an optimal regulator can be obtained by solving two algebraic Riccati equations. For systems described by transfer functions, either Wiener-Hopf optimization or projection results can be applied. The optimal regulator is then obtained using operations with proper stable rational matrices: inner-outer...

Sliding mode controller-observer design for multivariable linear systems with unmatched uncertainty

A. Jafari Koshkouei, Alan S. I. Zinober (2000)

Kybernetika

This paper presents sufficient conditions for the sliding mode control of a system with disturbance input. The behaviour of the sliding dynamics in the presence of unmatched uncertainty is also studied. When a certain sufficient condition on the gain feedback matrix of the discontinuous controller and the disturbance bound holds, then the disturbance does not affect the sliding system. The design of asymptotically stable sliding observers for linear multivariable systems is presented. A sliding...

Sliding-mode pinning control of complex networks

Oscar J. Suarez, Carlos J. Vega, Santiago Elvira-Ceja, Edgar N. Sanchez, David I. Rodriguez (2018)

Kybernetika

In this paper, a novel approach for controlling complex networks is proposed; it applies sliding-mode pinning control for a complex network to achieve trajectory tracking. This control strategy does not require the network to have the same coupling strength on all edges; and for pinned nodes, the ones with the highest degree are selected. The illustrative example is composed of a network of 50 nodes; each node dynamics is a Chen chaotic attractor. Two cases are presented. For the first case the...

Smooth homogeneous asymptotically stabilizing feedback controls

H. Hermes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

If a smooth nonlinear affine control system has a controllable linear approximation, a standard technique for constructing a smooth (linear) asymptotically stabilizing feedbackcontrol is via the LQR (linear, quadratic, regulator) method. The nonlinear system may not have a controllable linear approximation, but instead may be shown to be small (or large) time locally controllable via a high order, homogeneous approximation. In this case one can attempt to construct an asymptotically stabilizing...

Currently displaying 1 – 20 of 139

Page 1 Next