Page 1 Next

Displaying 1 – 20 of 23

Showing per page

L2 performance induced by feedbacks with multiple saturations

Andrew R. Teel (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Multi-level saturation feedbacks induce nonlinear disturbance-to-state L2 stability for nonlinear systems in feedforward form. This class of systems includes linear systems with actuator constraints.

Leader-following consensus of multiple linear systems under switching topologies: An averaging method

Wei Ni, Xiaoli Wang, Chun Xiong (2012)

Kybernetika

The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI...

LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties

Pagavathigounder Balasubramaniam, Shanmugam Lakshmanan, Rajan Rakkiyappan (2012)

International Journal of Applied Mathematics and Computer Science

This paper studies an LMI optimization problem of delay-dependent robust stability criteria for stochastic systems with polytopic and linear fractional uncertainties. The delay is assumed to be time-varying and belong to a given interval, which means that lower and upper bounds of this interval time-varying delay are available. The uncertainty under consideration includes polytopic-type uncertainty and linear fractional norm-bounded uncertainty. Based on the new Lyapunov-Krasovskii functional, some...

Local analysis of hybrid systems on polyhedral sets with state-dependent switching

John Leth, Rafael Wisniewski (2014)

International Journal of Applied Mathematics and Computer Science

This paper deals with stability analysis of hybrid systems. Various stability concepts related to hybrid systems are introduced. The paper advocates a local analysis. It involves the equivalence relation generated by reset maps of a hybrid system. To establish a tangible method for stability analysis, we introduce the notion of a chart, which locally reduces the complexity of the hybrid system. In a chart, a hybrid system is particularly simple and can be analyzed with the use of methods borrowed...

Local asymptotic stability for nonlinear state feedback delay systems

Alfredo Germani, Costanzo Manes, Pierdomenico Pepe (2000)

Kybernetika

This paper considers the problem of output control of nonlinear delay systems by means of state delayed feedback. In previous papers, through the use of a suitable formalism, standard output control problems, such as output regulation, trajectory tracking, disturbance decoupling and model matching, have been solved for a class of nonlinear delay systems. However, in general an output control scheme does not guarantee internal stability of the system. Some results on this issue are presented in this...

Local stability conditions for discrete-time cascade locally recurrent neural networks

Krzysztof Patan (2010)

International Journal of Applied Mathematics and Computer Science

The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dynamics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward. A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates local stability conditions for the analysed class of neural networks using Lyapunov's first method. Moreover, a stabilization...

Logarithmic decay of the energy for an hyperbolic-parabolic coupled system

Ines Kamoun Fathallah (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...

Logarithmic decay of the energy for an hyperbolic-parabolic coupled system

Ines Kamoun Fathallah (2011)

ESAIM: Control, Optimisation and Calculus of Variations

This paper is devoted to the study of a coupled system which consists of a wave equation and a heat equation coupled through a transmission condition along a steady interface. This system is a linearized model for fluid-structure interaction introduced by Rauch, Zhang and Zuazua for a simple transmission condition and by Zhang and Zuazua for a natural transmission condition. Using an abstract theorem of Burq and a new Carleman estimate proved near the interface, we complete the results obtained...

Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping

Gimyong Hong, Hakho Hong (2022)

Applications of Mathematics

We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the...

Long time behaviour and stationary regime of memory gradient diffusions

Sébastien Gadat, Fabien Panloup (2014)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we are interested in a diffusion process based on a gradient descent. The process is non Markov and has a memory term which is built as a weighted average of the drift term all along the past of the trajectory. For this type of diffusion, we study the long time behaviour of the process in terms of the memory. We exhibit some conditions for the long-time stability of the dynamical system and then provide, when stable, some convergence properties of the occupation measures and of the...

Currently displaying 1 – 20 of 23

Page 1 Next