Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Efficiency analysis of control algorithms in spatially distributed systems with chaotic behavior

Łukasz Korus (2014)

International Journal of Applied Mathematics and Computer Science

The paper presents results of examination of control algorithms for the purpose of controlling chaos in spatially distributed systems like the coupled map lattice (CML). The mathematical definition of the CML, stability analysis as well as some basic results of numerical simulation exposing complex, spatiotemporal and chaotic behavior of the CML were already presented in another paper. The main purpose of this article is to compare the efficiency of controlling chaos by simple classical algorithms...

Eigenstructure assignment by proportional-plus-derivative feedback for second-order linear control systems

Taha H. S. Abdelaziz, Michael Valášek (2005)

Kybernetika

This paper introduces a complete parametric approach for solving the eigenstructure assignment problem using proportional-plus-derivative feedback for second-order linear control systems. In this work, necessary and sufficient conditions that ensure the solvability for the second-order system are derived. A parametric solution to the feedback gain matrix is introduced that describes the available degrees of freedom offered by the proportional-plus-derivative feedback in selecting the associated...

Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains

Piotr Ostalczyk (2012)

International Journal of Applied Mathematics and Computer Science

Two description forms of a linear fractional-order discrete system are considered. The first one is by a fractional-order difference equation, whereas the second by a fractional-order state-space equation. In relation to the two above-mentioned description forms, stability domains are evaluated. Several simulations of stable, marginally stable and unstable unit step responses of fractional-order systems due to different values of system parameters are presented.

Estimates for perturbations of discounted Markov chains on general spaces

Raúl Montes-de-Oca, Alexander Sakhanenko, Francisco Salem-Silva (2003)

Applicationes Mathematicae

We analyse a Markov chain and perturbations of the transition probability and the one-step cost function (possibly unbounded) defined on it. Under certain conditions, of Lyapunov and Harris type, we obtain new estimates of the effects of such perturbations via an index of perturbations, defined as the difference of the total expected discounted costs between the original Markov chain and the perturbed one. We provide an example which illustrates our analysis.

Event-triggered H static output feedback control of discrete time piecewise-affine systems

Zhuyun Xue, Mouquan Shen (2021)

Kybernetika

This paper is concerned with the problem of H event-triggered output feedback control of discrete time piecewise-affine systems. Relying on system outputs, a piecewise-affine triggering condition is constructed to release communication burden. Resorting to piecewise Lyapunov functional and robust control techniques, sufficient conditions are built to ensure the closed-loop systems to be asymptotically stable with the prescribed H performance. By utilizing a separation strategy, the static output...

Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays

Qianhong Zhang, Lihui Yang, Daixi Liao (2011)

International Journal of Applied Mathematics and Computer Science

Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.

Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems

Dibyendu Baksi, Kanti B. Datta, Goshaidas Ray (2002)

Kybernetika

A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation T 2 X = T 1 is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.

Exponential stability and transfer functions of processes governed by symmetric hyperbolic systems

Cheng-Zhong Xu, Gauthier Sallet (2002)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system is...

Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems

Cheng-Zhong Xu, Gauthier Sallet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the frequency and time domain behaviour of a heat exchanger network system. The system is governed by hyperbolic partial differential equations. Both the control operator and the observation operator are unbounded but admissible. Using the theory of symmetric hyperbolic systems, we prove exponential stability of the underlying semigroup for the heat exchanger network. Applying the recent theory of well-posed infinite-dimensional linear systems, we prove that the system...

Currently displaying 1 – 20 of 31

Page 1 Next