### Balancing cyclic $R$-ary Gray codes.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We show that the problem of finding the family of all so called the locally reducible factors in the binary de Bruijn graph of order k is equivalent to the problem of finding all colourings of edges in the binary de Bruijn graph of order k-1, where each vertex belongs to exactly two cycles of different colours. In this paper we define and study such colouring for the greater class of the de Bruijn graphs in order to define a class of so called regular factors, which is not so difficult to construct....

Pseudorandom binary sequences are required in stream ciphers and other applications of modern communication systems. In the first case it is essential that the sequences be unpredictable. The linear complexity of a sequence is the amount of it required to define the remainder. This work addresses the problem of the analysis and computation of the linear complexity of certain pseudorandom binary sequences. Finally we conclude some characteristics of the nonlinear function that produces the sequences...

The necessary and sufficient conditions are extracted for periodicity of bi-ideals. They cover infinitely and finitely generated bi-ideals.

The Legendre symbol has been used to construct sequences with ideal cross-correlation, but it was never used in the arithmetic cross-correlation. In this paper, a new class of generalized Legendre sequences are described and analyzed with respect to their period, distributional, arithmetic cross-correlation and distinctness properties. This analysis gives a new approach to study the connection between the Legendre symbol and the arithmetic cross-correlation. In the end of this paper, possible application...

Large families of pseudorandom binary sequences and lattices are constructed by using the multiplicative inverse and estimates of exponential sums in a finite field. Pseudorandom measures of binary sequences and lattices are studied.

Frequency hopping sequences sets are required in frequency hopping code division multiple access systems. For the anti-jamming purpose, frequency hopping sequences are required to have a large linear span. In this paper, by using a permutation polynomial δ(x) over a finite field, we transform several optimal sets of frequency hopping sequences with small linear span into ones with large linear span. The exact values of the linear span are presented by using the methods of counting the terms of the...

Joint 2-adic complexity is a new important index of the cryptographic security for multisequences. In this paper, we extend the usual Fourier transform to the case of multisequences and derive an upper bound for the joint 2-adic complexity. Furthermore, for the multisequences with pn-period, we discuss the relation between sequences and their Fourier coefficients. Based on the relation, we determine a lower bound for the number of multisequences with given joint 2-adic complexity.

Joint 2-adic complexity is a new important index of the cryptographic security for multisequences. In this paper, we extend the usual Fourier transform to the case of multisequences and derive an upper bound for the joint 2-adic complexity. Furthermore, for the multisequences with pn-period, we discuss the relation between sequences and their Fourier coefficients. Based on the relation, we determine a lower bound for the number of multisequences...

A new method of analysing the linear complexity of 2nd-order nonlinear filterings of m-sequences that is based on the concept of regular coset is present. The procedure considers any value of the LFSR's length, L, (prime or composite number). Emphasis is on the geometric interpretation of the regular cosets which produce degeneracies in the linear complexity of the filtered sequence. Numerical expressions to compute the linear complexity of such sequences are given as well as practical rules to...