Displaying 281 – 300 of 849

Showing per page

The i-chords of cycles and paths

Terry A. McKee (2012)

Discussiones Mathematicae Graph Theory

An i-chord of a cycle or path is an edge whose endpoints are a distance i ≥ 2 apart along the cycle or path. Motivated by many standard graph classes being describable by the existence of chords, we investigate what happens when i-chords are required for specific values of i. Results include the following: A graph is strongly chordal if and only if, for i ∈ {4,6}, every cycle C with |V(C)| ≥ i has an (i/2)-chord. A graph is a threshold graph if and only if, for i ∈ {4,5}, every path P with |V(P)|...

The Incidence Chromatic Number of Toroidal Grids

Éric Sopena, Jiaojiao Wu (2013)

Discussiones Mathematicae Graph Theory

An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when...

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order n with i r ( G ) = 1 , n - 1 ,...

The induced paths in a connected graph and a ternary relation determined by them

Ladislav Nebeský (2002)

Mathematica Bohemica

By a ternary structure we mean an ordered pair ( X 0 , T 0 ) , where X 0 is a finite nonempty set and T 0 is a ternary relation on X 0 . By the underlying graph of a ternary structure ( X 0 , T 0 ) we mean the (undirected) graph G with the properties that X 0 is its vertex set and distinct vertices u and v of G are adjacent if and only if { x X 0 T 0 ( u , x , v ) } { x X 0 T 0 ( v , x , u ) } = { u , v } . A ternary structure ( X 0 , T 0 ) is said to be the B-structure of a connected graph G if X 0 is the vertex set of G and the following statement holds for all u , x , y X 0 : T 0 ( x , u , y ) if and only if u belongs to an induced x - y ...

The inertia of unicyclic graphs and bicyclic graphs

Ying Liu (2013)

Discussiones Mathematicae - General Algebra and Applications

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic...

Currently displaying 281 – 300 of 849