Displaying 461 – 480 of 1341

Showing per page

On iteration digraph and zero-divisor graph of the ring n

Tengxia Ju, Meiyun Wu (2014)

Czechoslovak Mathematical Journal

In the first part, we assign to each positive integer n a digraph Γ ( n , 5 ) , whose set of vertices consists of elements of the ring n = { 0 , 1 , , n - 1 } with the addition and the multiplication operations modulo n , and for which there is a directed edge from a to b if and only if a 5 b ( mod n ) . Associated with Γ ( n , 5 ) are two disjoint subdigraphs: Γ 1 ( n , 5 ) and Γ 2 ( n , 5 ) whose union is Γ ( n , 5 ) . The vertices of Γ 1 ( n , 5 ) are coprime to n , and the vertices of Γ 2 ( n , 5 ) are not coprime to n . In this part, we study the structure of Γ ( n , 5 ) in detail. In the second part, we investigate the zero-divisor...

On k -ordered bipartite graphs.

Faudree, Jill R., Gould, Ronald J., Pfender, Florian, Wolf, Allison (2003)

The Electronic Journal of Combinatorics [electronic only]

On k -pairable graphs from trees

Zhongyuan Che (2007)

Czechoslovak Mathematical Journal

The concept of the k -pairable graphs was introduced by Zhibo Chen (On k -pairable graphs, Discrete Mathematics 287 (2004), 11–15) as an extension of hypercubes and graphs with an antipodal isomorphism. In the same paper, Chen also introduced a new graph parameter p ( G ) , called the pair length of a graph G , as the maximum k such that G is k -pairable and p ( G ) = 0 if G is not k -pairable for any positive integer k . In this paper, we answer the two open questions raised by Chen in the case that the graphs involved...

On k -strong distance in strong digraphs

Ping Zhang (2002)

Mathematica Bohemica

For a nonempty set S of vertices in a strong digraph D , the strong distance d ( S ) is the minimum size of a strong subdigraph of D containing the vertices of S . If S contains k vertices, then d ( S ) is referred to as the k -strong distance of S . For an integer k 2 and a vertex v of a strong digraph D , the k -strong eccentricity s e k ( v ) of v is the maximum k -strong distance d ( S ) among all sets S of k vertices in D containing v . The minimum k -strong eccentricity among the vertices of D is its k -strong radius s r a d k D and the maximum...

On kaleidoscopic pseudo-randomness of finite Euclidean graphs

Le Anh Vinh (2012)

Discussiones Mathematicae Graph Theory

D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.

Currently displaying 461 – 480 of 1341