Displaying 141 – 160 of 847

Showing per page

The crossing number of the generalized Petersen graph P [ 3 k , k ]

Stanley Fiorini, John Baptist Gauci (2003)

Mathematica Bohemica

Guy and Harary (1967) have shown that, for k 3 , the graph P [ 2 k , k ] is homeomorphic to the Möbius ladder M 2 k , so that its crossing number is one; it is well known that P [ 2 k , 2 ] is planar. Exoo, Harary and Kabell (1981) have shown hat the crossing number of P [ 2 k + 1 , 2 ] is three, for k 2 . Fiorini (1986) and Richter and Salazar (2002) have shown that P [ 9 , 3 ] has crossing number two and that P [ 3 k , 3 ] has crossing number k , provided k 4 . We extend this result by showing that P [ 3 k , k ] also has crossing number k for all k 4 .

The crossing numbers of join products of paths with graphs of order four

Marián Klešč, Stefan Schrötter (2011)

Discussiones Mathematicae Graph Theory

Kulli and Muddebihal [V.R. Kulli, M.H. Muddebihal, Characterization of join graphs with crossing number zero, Far East J. Appl. Math. 5 (2001) 87-97] gave the characterization of all pairs of graphs which join product is planar graph. The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. There are only few results concerning crossing numbers of graphs obtained as join product of two graphs. In the paper, the exact values of crossing numbers...

The crossing numbers of products of a 5-vertex graph with paths and cycles

Marián Klešč (1999)

Discussiones Mathematicae Graph Theory

There are several known exact results on the crossing numbers of Cartesian products of paths, cycles or stars with "small" graphs. Let H be the 5-vertex graph defined from K₅ by removing three edges incident with a common vertex. In this paper, we extend the earlier results to the Cartesian products of H × Pₙ and H × Cₙ, showing that in the general case the corresponding crossing numbers are 3n-1, and 3n for even n or 3n+1 if n is odd.

The Crossing Numbers of Products of Path with Graphs of Order Six

Marián Klešč, Jana Petrillová (2013)

Discussiones Mathematicae Graph Theory

The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. For the path Pn of length n, the crossing numbers of Cartesian products G⃞Pn for all connected graphs G on five vertices are also known. In this paper, the crossing numbers of Cartesian products G⃞Pn for graphs G of order six are studied. Let H denote the unique tree of order six with two vertices of degree three. The main contribution is that the crossing number of the Cartesian...

The cube recurrence.

Carroll, Gabriel D., Speyer, David (2004)

The Electronic Journal of Combinatorics [electronic only]

The cubic mapping graph for the ring of Gaussian integers modulo n

Yangjiang Wei, Jizhu Nan, Gaohua Tang (2011)

Czechoslovak Mathematical Journal

The article studies the cubic mapping graph Γ ( n ) of n [ i ] , the ring of Gaussian integers modulo n . For each positive integer n > 1 , the number of fixed points and the in-degree of the elements 1 ¯ and 0 ¯ in Γ ( n ) are found. Moreover, complete characterizations in terms of n are given in which Γ 2 ( n ) is semiregular, where Γ 2 ( n ) is induced by all the zero-divisors of n [ i ] .

The decomposability of additive hereditary properties of graphs

Izak Broere, Michael J. Dorfling (2000)

Discussiones Mathematicae Graph Theory

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. If ₁,...,ₙ are properties of graphs, then a (₁,...,ₙ)-decomposition of a graph G is a partition E₁,...,Eₙ of E(G) such that G [ E i ] , the subgraph of G induced by E i , is in i , for i = 1,...,n. We define ₁ ⊕...⊕ ₙ as the property G ∈ : G has a (₁,...,ₙ)-decomposition. A property is said to be decomposable if there exist non-trivial hereditary properties ₁ and ₂ such that = ₁⊕ ₂....

Currently displaying 141 – 160 of 847