The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 97

Showing per page

A note on cyclic chromatic number

Jana Zlámalová (2010)

Discussiones Mathematicae Graph Theory

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number χ c ( G ) of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that χ c ( G ) Δ * + 2 for any 3-connected plane graph G with maximum face degree Δ*. It is known that the conjecture holds true for Δ* ≤ 4 and Δ* ≥ 18. The validity of the conjecture is proved in the paper for some special classes...

A note on face coloring entire weightings of plane graphs

Stanislav Jendrol, Peter Šugerek (2014)

Discussiones Mathematicae Graph Theory

Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3

A note on graph coloring

D. De Werra (1974)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

A note on joins of additive hereditary graph properties

Ewa Drgas-Burchardt (2006)

Discussiones Mathematicae Graph Theory

Let L a denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set ( L a , ) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in ( L a , ) has a finite or infinite family of minimal forbidden subgraphs.

A note on Möbius inversion over power set lattices

Klaus Dohmen (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we establish a theorem on Möbius inversion over power set lattices which strongly generalizes an early result of Whitney on graph colouring.

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)

Discussiones Mathematicae Graph Theory

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

A note on on-line ranking number of graphs

Gabriel Semanišin, Roman Soták (2006)

Czechoslovak Mathematical Journal

A k -ranking of a graph G = ( V , E ) is a mapping ϕ V { 1 , 2 , , k } such that each path with endvertices of the same colour c contains an internal vertex with colour greater than c . The ranking number of a graph G is the smallest positive integer k admitting a k -ranking of G . In the on-line version of the problem, the vertices v 1 , v 2 , , v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G [ { v 1 , v 2 , , v i } ] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest...

A note on radio antipodal colourings of paths

Riadh Khennoufa, Olivier Togni (2005)

Mathematica Bohemica

The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment f V ( G ) { 1 , 2 , ... , c } satisfying | f ( u ) - f ( v ) | D - d ( u , v ) for every two distinct vertices u and v of G , where D is the diameter of G . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.

Currently displaying 21 – 40 of 97