Displaying 21 – 40 of 97

Showing per page

A note on cyclic chromatic number

Jana Zlámalová (2010)

Discussiones Mathematicae Graph Theory

A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number χ c ( G ) of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that χ c ( G ) Δ * + 2 for any 3-connected plane graph G with maximum face degree Δ*. It is known that the conjecture holds true for Δ* ≤ 4 and Δ* ≥ 18. The validity of the conjecture is proved in the paper for some special classes...

A note on face coloring entire weightings of plane graphs

Stanislav Jendrol, Peter Šugerek (2014)

Discussiones Mathematicae Graph Theory

Given a weighting of all elements of a 2-connected plane graph G = (V,E, F), let f(α) denote the sum of the weights of the edges and vertices incident with the face _ and also the weight of _. Such an entire weighting is a proper face colouring provided that f(α) ≠ f(β) for every two faces α and _ sharing an edge. We show that for every 2-connected plane graph there is a proper face-colouring entire weighting with weights 1 through 4. For some families we improved 4 to 3

A note on graph coloring

D. De Werra (1974)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

A note on joins of additive hereditary graph properties

Ewa Drgas-Burchardt (2006)

Discussiones Mathematicae Graph Theory

Let L a denote a set of additive hereditary graph properties. It is a known fact that a partially ordered set ( L a , ) is a complete distributive lattice. We present results when a join of two additive hereditary graph properties in ( L a , ) has a finite or infinite family of minimal forbidden subgraphs.

A note on Möbius inversion over power set lattices

Klaus Dohmen (1997)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we establish a theorem on Möbius inversion over power set lattices which strongly generalizes an early result of Whitney on graph colouring.

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne Flandrin, Hao Li, Antoni Marczyk, Jean-François Saclé, Mariusz Woźniak (2017)

Discussiones Mathematicae Graph Theory

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

A note on on-line ranking number of graphs

Gabriel Semanišin, Roman Soták (2006)

Czechoslovak Mathematical Journal

A k -ranking of a graph G = ( V , E ) is a mapping ϕ V { 1 , 2 , , k } such that each path with endvertices of the same colour c contains an internal vertex with colour greater than c . The ranking number of a graph G is the smallest positive integer k admitting a k -ranking of G . In the on-line version of the problem, the vertices v 1 , v 2 , , v n of G arrive one by one in an arbitrary order, and only the edges of the induced graph G [ { v 1 , v 2 , , v i } ] are known when the colour for the vertex v i has to be chosen. The on-line ranking number of a graph G is the smallest...

A note on radio antipodal colourings of paths

Riadh Khennoufa, Olivier Togni (2005)

Mathematica Bohemica

The radio antipodal number of a graph G is the smallest integer c such that there exists an assignment f V ( G ) { 1 , 2 , ... , c } satisfying | f ( u ) - f ( v ) | D - d ( u , v ) for every two distinct vertices u and v of G , where D is the diameter of G . In this note we determine the exact value of the antipodal number of the path, thus answering the conjecture given in [G. Chartrand, D. Erwin and P. Zhang, Math. Bohem. 127 (2002), 57–69]. We also show the connections between this colouring and radio labelings.

Currently displaying 21 – 40 of 97