The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 10 of 10

Showing per page

Signed degree sets in signed graphs

Shariefuddin Pirzada, T. A. Naikoo, F. A. Dar (2007)

Czechoslovak Mathematical Journal

The set D of distinct signed degrees of the vertices in a signed graph G is called its signed degree set. In this paper, we prove that every non-empty set of positive (negative) integers is the signed degree set of some connected signed graph and determine the smallest possible order for such a signed graph. We also prove that every non-empty set of integers is the signed degree set of some connected signed graph.

Signed domination and signed domatic numbers of digraphs

Lutz Volkmann (2011)

Discussiones Mathematicae Graph Theory

Let D be a finite and simple digraph with the vertex set V(D), and let f:V(D) → -1,1 be a two-valued function. If x N ¯ [ v ] f ( x ) 1 for each v ∈ V(D), where N¯[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V(D)) is called the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating functions f on D, is the signed domination number γ S ( D ) of D. A set f , f , . . . , f d of signed dominating functions on D with the property that i = 1 d f i ( x ) 1 for each...

Signed graphs with at most three eigenvalues

Farzaneh Ramezani, Peter Rowlinson, Zoran Stanić (2022)

Czechoslovak Mathematical Journal

We investigate signed graphs with just 2 or 3 distinct eigenvalues, mostly in the context of vertex-deleted subgraphs, the join of two signed graphs or association schemes.

Some results on semi-total signed graphs

Deepa Sinha, Pravin Garg (2011)

Discussiones Mathematicae Graph Theory

A signed graph (or sigraph in short) is an ordered pair S = ( S u , σ ) , where S u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L × ( S ) is a sigraph defined on the line graph L ( S u ) of the graph S u by assigning to each edge ef of L ( S u ) , the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph of a given...

Currently displaying 1 – 10 of 10

Page 1